메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 481-490

Jointly learning to extract and compress

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE CONSTRAINTS; CUTTING PLANE ALGORITHMS; DATA SETS; FAST APPROXIMATION; JOINT MODELS; MULTI-DOCUMENT SUMMARIZATION; SENTENCE EXTRACTION;

EID: 84859017414     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (213)

References (28)
  • 1
    • 0032270694 scopus 로고    scopus 로고
    • The use of MMR, diversity-based reranking for reordering documents and producing summaries
    • J. Carbonell and J. Goldstein. 1998. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proc. of SIGIR.
    • (1998) Proc. of SIGIR
    • Carbonell, J.1    Goldstein, J.2
  • 2
    • 77955886666 scopus 로고    scopus 로고
    • Online largemargin training of syntactic and structural translation features
    • D. Chiang, Y. Marton, and P. Resnik. 2008. Online largemargin training of syntactic and structural translation features. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Chiang, D.1    Marton, Y.2    Resnik, P.3
  • 3
    • 44449150380 scopus 로고    scopus 로고
    • Global inference for sentence compression an integer linear programming approach
    • J. Clarke and M. Lapata. 2008. Global Inference for Sentence Compression: An Integer Linear Programming Approach. Journal of Artificial Intelligence Research, 31:399-429. (Pubitemid 351761992)
    • (2008) Journal of Artificial Intelligence Research , vol.31 , pp. 399-429
    • Clarke, J.1    Lapata, M.2
  • 4
    • 0141496132 scopus 로고    scopus 로고
    • Ultraconservative online algorithms for multiclass problems
    • K. Crammer and Y. Singer. 2003. Ultraconservative online algorithms for multiclass problems. Journal of Machine Learning Research, 3:951-991.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 951-991
    • Crammer, K.1    Singer, Y.2
  • 8
    • 0039733596 scopus 로고    scopus 로고
    • Statistics-based summarization-step one: Sentence compression
    • K. Knight and D. Marcu. 2001. Statistics-based summarization-step one: Sentence compression. In Proc. of AAAI.
    • (2001) Proc. of AAAI
    • Knight, K.1    Marcu, D.2
  • 14
    • 41849095218 scopus 로고    scopus 로고
    • Discriminative sentence compression with soft syntactic constraints
    • R. McDonald. 2006. Discriminative sentence compression with soft syntactic constraints. In Proc. of EACL.
    • (2006) Proc. of EACL
    • McDonald, R.1
  • 15
    • 85013202438 scopus 로고    scopus 로고
    • Evaluating content selection in summarization: The pyramid method
    • A. Nenkova and R. Passonneau. 2004. Evaluating content selection in summarization: The pyramid method. In Proc. of NAACL.
    • (2004) Proc. of NAACL
    • Nenkova, A.1    Passonneau, R.2
  • 16
    • 34547462915 scopus 로고    scopus 로고
    • The impact of frequency on summarization
    • Redmond, Washington: Microsoft Research
    • A. Nenkova and L. Vanderwende. 2005. The impact of frequency on summarization. Technical report, MSRTR-2005-101. Redmond, Washington: Microsoft Research.
    • (2005) Technical Report, MSRTR-2005-101
    • Nenkova, A.1    Vanderwende, L.2
  • 17
    • 84857612295 scopus 로고    scopus 로고
    • Learning and inference for hierarchically split PCFGs
    • S. Petrov and D. Klein. 2007. Learning and inference for hierarchically split PCFGs. In AAAI.
    • (2007) AAAI
    • Petrov, S.1    Klein, D.2
  • 18
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT press
    • J.C. Platt. 1999. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods. MIT press.
    • (1999) Advances in Kernel Methods
    • Platt, J.C.1
  • 19
    • 84859884755 scopus 로고    scopus 로고
    • Fastsum: Fast and accurate query-based multi-document summarization
    • F. Schilder and R. Kondadadi. 2008. Fastsum: Fast and accurate query-based multi-document summarization. In Proc. of ACL.
    • (2008) Proc. of ACL
    • Schilder, F.1    Kondadadi, R.2
  • 24
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector machine learning for interdependent and structured output spaces. In Proc. of ICML.
    • (2004) Proc. of ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 26
    • 84859976602 scopus 로고    scopus 로고
    • Automatic generation of story highlights
    • K. Woodsend and M. Lapata. 2010. Automatic generation of story highlights. In Proc. of ACL.
    • (2010) Proc. of ACL
    • Woodsend, K.1    Lapata, M.2
  • 27
    • 80053377926 scopus 로고    scopus 로고
    • Multi-document summarization by maximizing informative content-words
    • W. Yih, J. Goodman, L. Vanderwende, and H. Suzuki. 2007. Multi-document summarization by maximizing informative content-words. In Proc. of IJCAI.
    • (2007) Proc. of IJCAI
    • Yih, W.1    Goodman, J.2    Vanderwende, L.3    Suzuki, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.