-
1
-
-
0003802343
-
-
Monterey, CA: Wadsworth and Brooks
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
3
-
-
2442439081
-
Genetic programming for data classification: Partitioning the search space
-
J. Eggermont, J. N. Kok, and W. A. Kosters, "Genetic programming for data classification: Partitioning the search space," in Proc. ACM SAC, 2004, pp. 1001-1005.
-
(2004)
Proc. ACM SAC
, pp. 1001-1005
-
-
Eggermont, J.1
Kok, J.N.2
Kosters, W.A.3
-
4
-
-
34547728724
-
Advanced genetic programming based machine learning
-
Sep
-
S. Winkler, M. Affenzeller, and S. Wagner, "Advanced genetic programming based machine learning," J. Math. Model. Algorithms, vol. 6, no. 3, pp. 455-480, Sep. 2007.
-
(2007)
J. Math. Model. Algorithms
, vol.6
, Issue.3
, pp. 455-480
-
-
Winkler, S.1
Affenzeller, M.2
Wagner, S.3
-
5
-
-
35048858994
-
Multiclass object classification using genetic programming
-
LNCS
-
M. Zhang and W. Smart, "Multiclass object classification using genetic programming," in Proc. Appl. Evol. Comput., vol. 3005, LNCS, 2004, pp. 369-378.
-
(2004)
Proc. Appl. Evol. Comput.
, vol.3005
, pp. 369-378
-
-
Zhang, M.1
Smart, W.2
-
6
-
-
0034873063
-
Representing classification problems in genetic programming
-
T. Loveard and V. Ciesielski, "Representing classification problems in genetic programming," in Proc. Congr. Evol. Comput., 2001, vol. 12, pp. 1070-1077.
-
(2001)
Proc. Congr. Evol. Comput.
, vol.12
, pp. 1070-1077
-
-
Loveard, T.1
Ciesielski, V.2
-
7
-
-
27144549260
-
Editorial: Special Issue on learning from imbalanced data sets
-
Jun
-
N. V. Chawla, N. Japkowicz, and A. Kolcz, "Editorial: Special Issue on learning from imbalanced data sets," ACM SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 1-6, Jun. 2004.
-
(2004)
ACM SIGKDD Explor. Newslett.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
8
-
-
0032633834
-
Target detection of SAR imagery by genetic programming
-
May
-
D. Howard, S. Roberts, and R. Brankin, "Target detection of SAR imagery by genetic programming," Adv. Eng. Softw., vol. 30, no. 5, pp. 303-311, May 1999.
-
(1999)
Adv. Eng. Softw.
, vol.30
, Issue.5
, pp. 303-311
-
-
Howard, D.1
Roberts, S.2
Brankin, R.3
-
9
-
-
0003651781
-
-
Ph.D. dissertation, AI Lab. and Center Biol. Comput. Learn.,MIT, Cambridge, MA
-
K.-K. Sung, "Learning and example selection for object and pattern recognition," Ph.D. dissertation, AI Lab. and Center Biol. Comput. Learn.,MIT, Cambridge, MA, 1996.
-
(1996)
Learning and Example Selection for Object and Pattern Recognition
-
-
Sung, K.-K.1
-
10
-
-
84859003902
-
Handling imbalanced data sets in insurance riskmodeling
-
E. Pednault, B. Rosen, and C. Apte, "Handling imbalanced data sets in insurance riskmodeling," in Proc.Workshops 17th Nat. Conf. Artif. Intell., Learn. From Imbalanced Data Sets, 2005, pp. 58-63.
-
(2005)
Proc.Workshops 17th Nat. Conf. Artif. Intell., Learn. From Imbalanced Data Sets
, pp. 58-63
-
-
Pednault, E.1
Rosen, B.2
Apte, C.3
-
11
-
-
21044433766
-
Training genetic programming on half a million patterns: An example from anomaly detection
-
Jun
-
D. Song, M. Heywood, and A. Zincir-Heywood, "Training genetic programming on half a million patterns: An example from anomaly detection," IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 225-239, Jun. 2005.
-
(2005)
IEEE Trans. Evol. Comput.
, vol.9
, Issue.3
, pp. 225-239
-
-
Song, D.1
Heywood, M.2
Zincir-Heywood, A.3
-
12
-
-
0013113240
-
Adaptive fraud detection
-
Sep
-
T. Fawcett and F. Provost, "Adaptive fraud detection," Data Mining Knowl. Discov., vol. 1, no. 3, pp. 291-316, Sep. 1997.
-
(1997)
Data Mining Knowl. Discov.
, vol.1
, Issue.3
, pp. 291-316
-
-
Fawcett, T.1
Provost, F.2
-
13
-
-
0042961664
-
Credit card fraud detection using meta-learning: Issues and initial results
-
S. J. Stolfo, D.W. Fan,W. Lee, A. L. Prodromidis, and P. K. Chan, "Credit card fraud detection using meta-learning: Issues and initial results," in Proc. AAAI Workshop AI Approaches Fraud Detection Risk Manage., 1997, pp. 83-90.
-
(1997)
Proc. AAAI Workshop AI Approaches Fraud Detection Risk Manage.
, pp. 83-90
-
-
Stolfo, S.J.1
Fan, D.W.2
Lee, W.3
Prodromidis, A.L.4
Chan, P.K.5
-
15
-
-
0036522693
-
Strategies for learning in class imbalance problems
-
Mar
-
R. Barandela, J. S. Sanchez, V. Garcia, and E. Rangel, "Strategies for learning in class imbalance problems," Pattern Recognit., vol. 36, no. 3, pp. 849-851, Mar. 2003.
-
(2003)
Pattern Recognit.
, vol.36
, Issue.3
, pp. 849-851
-
-
Barandela, R.1
Sanchez, J.S.2
Garcia, V.3
Rangel, E.4
-
16
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
M. Kubat and S. Matwin, "Addressing the curse of imbalanced training sets: One-sided selection," in Proc. 14th Int. Conf. Mach. Learn., 1997, pp. 179-186.
-
(1997)
Proc. 14th Int. Conf. Mach. Learn.
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
17
-
-
0030211964
-
Bagging predictors
-
Aug
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
18
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Jul
-
A. P. Bradley, "The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recognit., vol. 30, no. 7, pp. 1145-1159, Jul. 1997.
-
(1997)
Pattern Recognit.
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
19
-
-
84956852101
-
Adapting the fitness function in GP for data mining
-
LNCS
-
J. Eggermont, A. Eiben, and J. van Hemert, "Adapting the fitness function in GP for data mining," in Proc. 2nd Eur. Workshop Genetic Program., vol. 1598, LNCS, 1999, pp. 193-202.
-
(1999)
Proc. 2nd Eur. Workshop Genetic Program.
, vol.1598
, pp. 193-202
-
-
Eggermont, J.1
Eiben, A.2
Van Hemert, J.3
-
20
-
-
12244279570
-
Data mining in metric space: An empirical analysis of supervised learning performance criteria
-
R. Caruana, "Data mining in metric space: An empirical analysis of supervised learning performance criteria," in Proc. ROC Anal. AI Workshop (ECAI), 2004, pp. 69-78.
-
(2004)
Proc. ROC Anal. AI Workshop (ECAI
, pp. 69-78
-
-
Caruana, R.1
-
21
-
-
27144528137
-
Differential negative reinforcement improves classifier system learning rate in two-class problems with unequal base rates
-
J. R. Roza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds
-
J. H. Holmes, "Differential negative reinforcement improves classifier system learning rate in two-class problems with unequal base rates," in Proc. 3rd Annu. Conf. Genetic Program., J. R. Roza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., 1998, pp. 635-644.
-
(1998)
Proc. 3rd Annu. Conf. Genetic Program.
, pp. 635-644
-
-
Holmes, J.H.1
-
22
-
-
85041528332
-
Reducing misclassification costs
-
M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk, "Reducing misclassification costs," in Proc. 11th Int. Conf. Mach. Learn., 1994, pp. 217-225.
-
(1994)
Proc. 11th Int. Conf. Mach. Learn.
, pp. 217-225
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
Ali, K.4
Hume, T.5
Brunk, C.6
-
23
-
-
0006658645
-
Genetic programming for classification of brain tumours from nuclear magnetic resonance biopsy spectra
-
H. Gray and R.Maxwell, "Genetic programming for classification of brain tumours from nuclear magnetic resonance biopsy spectra," in Proc. 1st Annu. Conf. Genetic Program., 1996, pp. 424-430.
-
(1996)
Proc. 1st Annu. Conf. Genetic Program.
, pp. 424-430
-
-
Gray, H.1
Maxwell, R.2
-
24
-
-
77955932153
-
Classification of tumor marker values using heuristic data mining methods
-
S. M. Winkler, M. Affenzeller, W. Jacak, and H. Stekel, "Classification of tumor marker values using heuristic data mining methods," in Proc. 12th Annu. GECCO, 2010, pp. 1915-1922.
-
(2010)
Proc. 12th Annu. GECCO
, pp. 1915-1922
-
-
Winkler, S.M.1
Affenzeller, M.2
Jacak, W.3
Stekel, H.4
-
25
-
-
78650506039
-
The positive effects of negative information: Extending one-class classification models in binary proteomic sequence classification
-
LNAI
-
S. Mutter, B. Pfahringer, and G. Holmes, "The positive effects of negative information: Extending one-class classification models in binary proteomic sequence classification," in Proc. 22nd Australasian Joint Conf. AI, vol. 5866, LNAI, 2009, pp. 260-269.
-
(2009)
Proc. 22nd Australasian Joint Conf. AI
, vol.5866
, pp. 260-269
-
-
Mutter, S.1
Pfahringer, B.2
Holmes, G.3
-
26
-
-
34548078194
-
A genetic programming approach for bankruptcy prediction using a highly unbalanced database
-
LNCS, M. Giacobini, Ed
-
E. Alfaro-Cid, K. Sharman, and A. Esparcia-Alcazar, "A genetic programming approach for bankruptcy prediction using a highly unbalanced database," in Proc. Appl. Evol. Comput., vol. 4448, LNCS, M. Giacobini, Ed., 2007, pp. 169-178.
-
(2007)
Proc. Appl. Evol. Comput.
, vol.4448
, pp. 169-178
-
-
Alfaro-Cid, E.1
Sharman, K.2
Esparcia-Alcazar, A.3
-
27
-
-
33845346175
-
Multi objective support vector machines
-
Y. Jin, Ed. New York: Springer-Verlag, ch. 9
-
T. Suttorp and C. Igel, "Multi objective support vector machines," in Multi-Objective Machine Learning, Y. Jin, Ed. New York: Springer-Verlag, 2006, ch. 9, pp. 199-220.
-
(2006)
Multi-Objective Machine Learning
, pp. 199-220
-
-
Suttorp, T.1
Igel, C.2
-
28
-
-
47249113963
-
GP classification under imbalanced data sets: Active sub-sampling and AUC approximation
-
J. Doucette and M. I. Heywood, "GP classification under imbalanced data sets: Active sub-sampling and AUC approximation," in Proc. 11th EuroGP, 2008, pp. 266-277.
-
(2008)
Proc. 11th EuroGP
, pp. 266-277
-
-
Doucette, J.1
Heywood, M.I.2
-
29
-
-
27144524459
-
Class imbalance problem in UCS classifier system: Fitness adaptation
-
Sep
-
A. Orriols and E. Bernado-Mansilla, "Class imbalance problem in UCS classifier system: Fitness adaptation," in Proc. IEEE Congr. Evol. Comput., Sep. 2005, vol. 1, pp. 604-611.
-
(2005)
Proc. IEEE Congr. Evol. Comput.
, vol.1
, pp. 604-611
-
-
Orriols, A.1
Bernado-Mansilla, E.2
-
30
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. M. Weiss and F. Provost, "Learning when training data are costly: The effect of class distribution on tree induction," J. Artif. Intell. Res., vol. 19, pp. 315-354, 2003.
-
(2003)
J. Artif. Intell. Res.
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
31
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Nov
-
N. Japcowicz and S. Stephen, "The class imbalance problem: A systematic study," Intell. Data Anal., vol. 6, no. 5, pp. 429-450, Nov. 2002.
-
(2002)
Intell. Data Anal.
, vol.6
, Issue.5
, pp. 429-450
-
-
Japcowicz, N.1
Stephen, S.2
-
32
-
-
9444270977
-
Class imbalances versus class overlapping: An analysis of a learning system behavior
-
LNCS
-
R. C. Prati, G. Batista, and M. C. Monard, "Class imbalances versus class overlapping: An analysis of a learning system behavior," in Proc. 3rd Mexican Int. Conf. Artif. Intell.-Advances in Artificial Intelligence, vol. 2972, LNCS, 2004, pp. 312-321.
-
(2004)
Proc. 3rd Mexican Int. Conf. Artif. Intell.-Advances in Artificial Intelligence
, vol.2972
, pp. 312-321
-
-
Prati, R.C.1
Batista, G.2
Monard, M.C.3
-
33
-
-
64049108468
-
Exploratory undersampling for classimbalance learning
-
Apr
-
X.-Y. Liu, J. Wu, and Z.-H. Zhou, "Exploratory undersampling for classimbalance learning," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 2, pp. 539-550, Apr. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
34
-
-
28344435224
-
An application of classification analysis for skewed class distribution in therapeutic drug monitoring-The case of vancomycin
-
J.-X. Chen, T.-H. Cheng, A. L. F. Chan, and H.-Y. Wang, "An application of classification analysis for skewed class distribution in therapeutic drug monitoring-The case of vancomycin," in Proc. IDEAS Workshop Med. Inf. Syst.: Digital Hospital, 2004, pp. 35-39.
-
(2004)
Proc. IDEAS Workshop Med. Inf. Syst.: Digital Hospital
, pp. 35-39
-
-
Chen, J.-X.1
Cheng, T.-H.2
Chan, A.L.F.3
Wang, H.-Y.4
-
35
-
-
77953586736
-
Does cost-sensitive learning beat sampling for classifying rare classes
-
K. McCarthy, B. Zabar, and G. Weiss, "Does cost-sensitive learning beat sampling for classifying rare classes," in Proc. 1st Int. Workshop Utility-Based Data Mining, 2005, pp. 69-77.
-
(2005)
Proc. 1st Int. Workshop Utility-Based Data Mining
, pp. 69-77
-
-
McCarthy, K.1
Zabar, B.2
Weiss, G.3
-
36
-
-
33745218481
-
Balancing strategies and class overlapping
-
LNCS, A. F. Famili, J. N. Kok, J. M. Peña, A. Siebes, and A. J. Feelders, Eds
-
G. Batista, R. C. Prati, and M. C. Monard, "Balancing strategies and class overlapping," in Proc. 6th Int. Symp. IDA-Advances in Intelligent Data Analysis VI, vol. 3646, LNCS, A. F. Famili, J. N. Kok, J. M. Peña, A. Siebes, and A. J. Feelders, Eds., 2005, pp. 24-35.
-
(2005)
Proc. 6th Int. Symp. IDA-Advances in Intelligent Data Analysis VI
, vol.3646
, pp. 24-35
-
-
Batista, G.1
Prati, R.C.2
Monard, M.C.3
-
37
-
-
70449888110
-
Improving the classification accuracy of RBF and MLP neural networks trained with imbalanced samples
-
Sep
-
R. Alejo, V. Garcia, J. M. Sotoca, R. Mollineda, and J. S. Sanchez, "Improving the classification accuracy of RBF and MLP neural networks trained with imbalanced samples," in Proc. 7th Int. Conf. IDEAL, Sep. 2006, pp. 467-471.
-
(2006)
Proc. 7th Int. Conf. IDEAL
, pp. 467-471
-
-
Alejo, R.1
Garcia, V.2
Sotoca, J.M.3
Mollineda, R.4
Sanchez, J.S.5
-
38
-
-
57649202036
-
Experiment perspectives in learning from imbalanced data
-
J. V. Hulse, T. M. Khoshgoftaar, and A. Napolitano, "Experiment perspectives in learning from imbalanced data," in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 435-492.
-
(2007)
Proc. 24th Int. Conf. Mach. Learn.
, pp. 435-492
-
-
Hulse, J.V.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
39
-
-
34547125332
-
Scaling genetic programming to large datasets using hierarchical dynamic subset selection
-
Aug
-
R. Curry, P. Lichodzijewski, and M. Heywood, "Scaling genetic programming to large datasets using hierarchical dynamic subset selection," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 4, pp. 1065-1073, Aug. 2007.
-
(2007)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.37
, Issue.4
, pp. 1065-1073
-
-
Curry, R.1
Lichodzijewski, P.2
Heywood, M.3
-
40
-
-
85008255983
-
Dynamic training subset selection for supervised learning in genetic programming
-
LNCS, Y. Davidor, H.-P. Schwefel, and R. Manner, Eds
-
C. Gathercole and P. Ross, "Dynamic training subset selection for supervised learning in genetic programming," in Proc. PPSN III, vol. 866, LNCS, Y. Davidor, H.-P. Schwefel, and R. Manner, Eds., 1994, pp. 312-321.
-
(1994)
Proc. PPSN III
, vol.866
, pp. 312-321
-
-
Gathercole, C.1
Ross, P.2
-
41
-
-
84859005998
-
Ensemble approach for the classification of imbalanced data
-
LNAI
-
V. Nikulin, G. McLachlan, and S. K. Ng, "Ensemble approach for the classification of imbalanced data," in Proc. 22nd Australasian Joint Conf. AI, vol. 5866, LNAI, 2009, pp. 260-269.
-
(2009)
Proc. 22nd Australasian Joint Conf. AI
, vol.5866
, pp. 260-269
-
-
Nikulin, V.1
McLachlan, G.2
Ng, S.K.3
-
42
-
-
61549114384
-
SVM modeling for highly imbalanced classification
-
Feb
-
Y. Tang, Y.-Q. Zhang, N. Chawla, and S. Krasser, "SVM modeling for highly imbalanced classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 1, pp. 281-288, Feb. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.-Q.2
Chawla, N.3
Krasser, S.4
-
43
-
-
0001924639
-
Neural network classification and prior class probabilities
-
New York: Springer-Verlag
-
S. Lawrence, I. Burns, A. D. Back, A. C. Tsoi, and L. C. Giles, "Neural network classification and prior class probabilities," in Neural Networks: Tricks of the Trade. New York: Springer-Verlag, 1998, pp. 299-313.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 299-313
-
-
Lawrence, S.1
Burns, I.2
Back, A.D.3
Tsoi, A.C.4
Giles, L.C.5
-
44
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Apr
-
J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, no. 1, pp. 29-36, Apr. 1982.
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
45
-
-
21844463439
-
Model selection via the AUC
-
Banff, AB, Canada
-
S. Rosset, "Model selection via the AUC," in Proc. 21st Int. Conf. Mach. Learn., Banff, AB, Canada, 2004, pp. 89-97.
-
(2004)
Proc. 21st Int. Conf. Mach. Learn.
, pp. 89-97
-
-
Rosset, S.1
-
46
-
-
65649085468
-
Constructing new and better evaluation measures for machine learning
-
J. Huang and C. X. Ling, "Constructing new and better evaluation measures for machine learning," in Proc. 20th IJCAI, 2007, pp. 859-864.
-
(2007)
Proc. 20th IJCAI
, pp. 859-864
-
-
Huang, J.1
Ling, C.X.2
-
47
-
-
1942451946
-
Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic
-
L. Yan, R. Dodier, M. C. Mozer, and R. Wolniewicz, "Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic," in Proc. 20th ICML, 2003, pp. 848-855.
-
(2003)
Proc. 20th ICML
, pp. 848-855
-
-
Yan, L.1
Dodier, R.2
Mozer, M.C.3
Wolniewicz, R.4
-
48
-
-
70349280929
-
An experimental comparison of performance measures for classification
-
Jan
-
C. Ferri, J. Hernández-Orallo, and R. Modroiu, "An experimental comparison of performance measures for classification," Pattern Recognit. Lett., vol. 30, no. 1, pp. 27-38, Jan. 2009.
-
(2009)
Pattern Recognit. Lett.
, vol.30
, Issue.1
, pp. 27-38
-
-
Ferri, C.1
Hernández-Orallo, J.2
Modroiu, R.3
-
49
-
-
38349082433
-
Fitness functions in genetic programming for classification with unbalanced data
-
LNCS
-
G. Patterson and M. Zhang, "Fitness functions in genetic programming for classification with unbalanced data," in Proc. 20th Australian Joint Conf. Artif. Intell., vol. 4830, LNCS, 2007, pp. 769-775.
-
(2007)
Proc. 20th Australian Joint Conf. Artif. Intell.
, vol.4830
, pp. 769-775
-
-
Patterson, G.1
Zhang, M.2
-
51
-
-
84859002798
-
Evolving ensembles in multiobjective genetic programming for classification with unbalanced data
-
U. Bhowan, M. Zhang, and M. Johnston, "Evolving ensembles in multiobjective genetic programming for classification with unbalanced data," in Proc. Genetic Evol. Comput. Conf., 2011, pp. 1331-1339.
-
Proc. Genetic Evol. Comput. Conf
, vol.2011
, pp. 1331-1339
-
-
Bhowan, U.1
Zhang, M.2
Johnston, M.3
-
52
-
-
40949103072
-
Multi-objective competitive coevolution for efficient GP classifier problem decomposition
-
Man, Cybern
-
A. McIntyre and M. Heywood, "Multi-objective competitive coevolution for efficient GP classifier problem decomposition," in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2007, pp. 1930-1937.
-
(2007)
Proc. IEEE Int. Conf. Syst.
, pp. 1930-1937
-
-
McIntyre, A.1
Heywood, M.2
-
53
-
-
33846581659
-
An experimental study on pedestrian classification
-
Nov
-
S. Munder and D. Gavrila, "An experimental study on pedestrian classification," IEEE Trans. Pattern Anal.Mach. Intell., vol. 28, no. 11, pp. 1863-1868, Nov. 2006.
-
(2006)
IEEE Trans. Pattern Anal.Mach. Intell.
, vol.28
, Issue.11
, pp. 1863-1868
-
-
Munder, S.1
Gavrila, D.2
-
54
-
-
33646532047
-
Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification
-
Aug
-
M. Zhang and W. Smart, "Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification," Pattern Recognit. Lett., vol. 27, no. 11, pp. 1266-1274, Aug. 2006.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.11
, pp. 1266-1274
-
-
Zhang, M.1
Smart, W.2
-
55
-
-
78650790726
-
A comparison of classification strategies in genetic programming with unbalanced data
-
LNCS, J. Li, Ed
-
U. Bhowan, M. Johnston, and M. Zhang, "A comparison of classification strategies in genetic programming with unbalanced data," in Proc. 23rd Australasian Joint Conf. Artif. Intell., vol. 6464, LNCS, J. Li, Ed., 2010, pp. 243-252.
-
(2010)
Proc. 23rd Australasian Joint Conf. Artif. Intell.
, vol.6464
, pp. 243-252
-
-
Bhowan, U.1
Johnston, M.2
Zhang, M.3
-
56
-
-
70450059660
-
Differentiating between individual class performance in genetic programming fitness for classification with unbalanced data
-
U. Bhowan, M. Johnston, and M. Zhang, "Differentiating between individual class performance in genetic programming fitness for classification with unbalanced data," in Proc. IEEE CEC, 2009, pp. 2802-2809.
-
(2009)
Proc. IEEE CEC
, pp. 2802-2809
-
-
Bhowan, U.1
Johnston, M.2
Zhang, M.3
-
57
-
-
64549090220
-
Using enhanced genetic programming techniques for evolving classifiers in the context of medical diagnosis
-
Jun
-
S. M. Winkler, M. Affenzeller, and S. Wagner, "Using enhanced genetic programming techniques for evolving classifiers in the context of medical diagnosis," Genetic Program. Evolvable Mach., vol. 10, no. 2, pp. 111-140, Jun. 2009.
-
(2009)
Genetic Program. Evolvable Mach.
, vol.10
, Issue.2
, pp. 111-140
-
-
Winkler, S.M.1
Affenzeller, M.2
Wagner, S.3
-
58
-
-
84858999492
-
Genetic programming for improved receiver operating characteristics
-
LNCS, J. Kittler and F. Roli, Eds
-
W. B. Langdon and B. Buxton, "Genetic programming for improved receiver operating characteristics," in Proc. Multiple Classifier Syst., vol. 2096, LNCS, J. Kittler and F. Roli, Eds., 2001, pp. 68-77.
-
(2001)
Proc. Multiple Classifier Syst.
, vol.2096
, pp. 68-77
-
-
Langdon, W.B.1
Buxton, B.2
-
59
-
-
0003790115
-
The effect of class distribution on classifier learning: An empirical study
-
Rutgers Univ., New Brunswick, NJ, Tech. Rep. ML-TR-44
-
G. Weiss and F. Provost, "The effect of class distribution on classifier learning: An empirical study," Dept. Comput. Sci., Rutgers Univ., New Brunswick, NJ, Tech. Rep. ML-TR-44, 2001.
-
(2001)
Dept. Comput. Sci.
-
-
Weiss, G.1
Provost, F.2
-
60
-
-
0042346121
-
Tree induction for probability-based rankings
-
Sep
-
F. Provost and P. Domingos, "Tree induction for probability-based rankings," Mach. Learn., vol. 52, no. 3, pp. 199-215, Sep. 2003.
-
(2003)
Mach. Learn.
, vol.52
, Issue.3
, pp. 199-215
-
-
Provost, F.1
Domingos, P.2
-
64
-
-
0002467262
-
Components in regression
-
Mar
-
J. W. Tukey, "Components in regression," Biometrics, vol. 7, no. 1, pp. 33-69, Mar. 1951.
-
(1951)
Biometrics
, vol.7
, Issue.1
, pp. 33-69
-
-
Tukey, J.W.1
|