메뉴 건너뛰기




Volumn 42, Issue 2, 2012, Pages 406-421

Developing new fitness functions in genetic programming for classification with unbalanced data

Author keywords

Classification; fitness function; genetic programming (GP); unbalanced data

Indexed keywords

BINARY CLASSIFICATION; CLASS IMBALANCE; DATA SETS; FITNESS FUNCTIONS; LEARNING PROCESS; TRAINING DATA; TRAINING EXAMPLE; UNBALANCED DATA;

EID: 84859001991     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2011.2167144     Document Type: Article
Times cited : (97)

References (64)
  • 3
    • 2442439081 scopus 로고    scopus 로고
    • Genetic programming for data classification: Partitioning the search space
    • J. Eggermont, J. N. Kok, and W. A. Kosters, "Genetic programming for data classification: Partitioning the search space," in Proc. ACM SAC, 2004, pp. 1001-1005.
    • (2004) Proc. ACM SAC , pp. 1001-1005
    • Eggermont, J.1    Kok, J.N.2    Kosters, W.A.3
  • 4
    • 34547728724 scopus 로고    scopus 로고
    • Advanced genetic programming based machine learning
    • Sep
    • S. Winkler, M. Affenzeller, and S. Wagner, "Advanced genetic programming based machine learning," J. Math. Model. Algorithms, vol. 6, no. 3, pp. 455-480, Sep. 2007.
    • (2007) J. Math. Model. Algorithms , vol.6 , Issue.3 , pp. 455-480
    • Winkler, S.1    Affenzeller, M.2    Wagner, S.3
  • 5
    • 35048858994 scopus 로고    scopus 로고
    • Multiclass object classification using genetic programming
    • LNCS
    • M. Zhang and W. Smart, "Multiclass object classification using genetic programming," in Proc. Appl. Evol. Comput., vol. 3005, LNCS, 2004, pp. 369-378.
    • (2004) Proc. Appl. Evol. Comput. , vol.3005 , pp. 369-378
    • Zhang, M.1    Smart, W.2
  • 6
    • 0034873063 scopus 로고    scopus 로고
    • Representing classification problems in genetic programming
    • T. Loveard and V. Ciesielski, "Representing classification problems in genetic programming," in Proc. Congr. Evol. Comput., 2001, vol. 12, pp. 1070-1077.
    • (2001) Proc. Congr. Evol. Comput. , vol.12 , pp. 1070-1077
    • Loveard, T.1    Ciesielski, V.2
  • 7
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special Issue on learning from imbalanced data sets
    • Jun
    • N. V. Chawla, N. Japkowicz, and A. Kolcz, "Editorial: Special Issue on learning from imbalanced data sets," ACM SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 1-6, Jun. 2004.
    • (2004) ACM SIGKDD Explor. Newslett. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 8
    • 0032633834 scopus 로고    scopus 로고
    • Target detection of SAR imagery by genetic programming
    • May
    • D. Howard, S. Roberts, and R. Brankin, "Target detection of SAR imagery by genetic programming," Adv. Eng. Softw., vol. 30, no. 5, pp. 303-311, May 1999.
    • (1999) Adv. Eng. Softw. , vol.30 , Issue.5 , pp. 303-311
    • Howard, D.1    Roberts, S.2    Brankin, R.3
  • 11
    • 21044433766 scopus 로고    scopus 로고
    • Training genetic programming on half a million patterns: An example from anomaly detection
    • Jun
    • D. Song, M. Heywood, and A. Zincir-Heywood, "Training genetic programming on half a million patterns: An example from anomaly detection," IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 225-239, Jun. 2005.
    • (2005) IEEE Trans. Evol. Comput. , vol.9 , Issue.3 , pp. 225-239
    • Song, D.1    Heywood, M.2    Zincir-Heywood, A.3
  • 12
    • 0013113240 scopus 로고    scopus 로고
    • Adaptive fraud detection
    • Sep
    • T. Fawcett and F. Provost, "Adaptive fraud detection," Data Mining Knowl. Discov., vol. 1, no. 3, pp. 291-316, Sep. 1997.
    • (1997) Data Mining Knowl. Discov. , vol.1 , Issue.3 , pp. 291-316
    • Fawcett, T.1    Provost, F.2
  • 15
    • 0036522693 scopus 로고    scopus 로고
    • Strategies for learning in class imbalance problems
    • Mar
    • R. Barandela, J. S. Sanchez, V. Garcia, and E. Rangel, "Strategies for learning in class imbalance problems," Pattern Recognit., vol. 36, no. 3, pp. 849-851, Mar. 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.3 , pp. 849-851
    • Barandela, R.1    Sanchez, J.S.2    Garcia, V.3    Rangel, E.4
  • 16
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin, "Addressing the curse of imbalanced training sets: One-sided selection," in Proc. 14th Int. Conf. Mach. Learn., 1997, pp. 179-186.
    • (1997) Proc. 14th Int. Conf. Mach. Learn. , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Aug
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 18
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Jul
    • A. P. Bradley, "The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recognit., vol. 30, no. 7, pp. 1145-1159, Jul. 1997.
    • (1997) Pattern Recognit. , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 20
    • 12244279570 scopus 로고    scopus 로고
    • Data mining in metric space: An empirical analysis of supervised learning performance criteria
    • R. Caruana, "Data mining in metric space: An empirical analysis of supervised learning performance criteria," in Proc. ROC Anal. AI Workshop (ECAI), 2004, pp. 69-78.
    • (2004) Proc. ROC Anal. AI Workshop (ECAI , pp. 69-78
    • Caruana, R.1
  • 21
    • 27144528137 scopus 로고    scopus 로고
    • Differential negative reinforcement improves classifier system learning rate in two-class problems with unequal base rates
    • J. R. Roza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds
    • J. H. Holmes, "Differential negative reinforcement improves classifier system learning rate in two-class problems with unequal base rates," in Proc. 3rd Annu. Conf. Genetic Program., J. R. Roza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., 1998, pp. 635-644.
    • (1998) Proc. 3rd Annu. Conf. Genetic Program. , pp. 635-644
    • Holmes, J.H.1
  • 23
    • 0006658645 scopus 로고    scopus 로고
    • Genetic programming for classification of brain tumours from nuclear magnetic resonance biopsy spectra
    • H. Gray and R.Maxwell, "Genetic programming for classification of brain tumours from nuclear magnetic resonance biopsy spectra," in Proc. 1st Annu. Conf. Genetic Program., 1996, pp. 424-430.
    • (1996) Proc. 1st Annu. Conf. Genetic Program. , pp. 424-430
    • Gray, H.1    Maxwell, R.2
  • 24
    • 77955932153 scopus 로고    scopus 로고
    • Classification of tumor marker values using heuristic data mining methods
    • S. M. Winkler, M. Affenzeller, W. Jacak, and H. Stekel, "Classification of tumor marker values using heuristic data mining methods," in Proc. 12th Annu. GECCO, 2010, pp. 1915-1922.
    • (2010) Proc. 12th Annu. GECCO , pp. 1915-1922
    • Winkler, S.M.1    Affenzeller, M.2    Jacak, W.3    Stekel, H.4
  • 25
    • 78650506039 scopus 로고    scopus 로고
    • The positive effects of negative information: Extending one-class classification models in binary proteomic sequence classification
    • LNAI
    • S. Mutter, B. Pfahringer, and G. Holmes, "The positive effects of negative information: Extending one-class classification models in binary proteomic sequence classification," in Proc. 22nd Australasian Joint Conf. AI, vol. 5866, LNAI, 2009, pp. 260-269.
    • (2009) Proc. 22nd Australasian Joint Conf. AI , vol.5866 , pp. 260-269
    • Mutter, S.1    Pfahringer, B.2    Holmes, G.3
  • 26
    • 34548078194 scopus 로고    scopus 로고
    • A genetic programming approach for bankruptcy prediction using a highly unbalanced database
    • LNCS, M. Giacobini, Ed
    • E. Alfaro-Cid, K. Sharman, and A. Esparcia-Alcazar, "A genetic programming approach for bankruptcy prediction using a highly unbalanced database," in Proc. Appl. Evol. Comput., vol. 4448, LNCS, M. Giacobini, Ed., 2007, pp. 169-178.
    • (2007) Proc. Appl. Evol. Comput. , vol.4448 , pp. 169-178
    • Alfaro-Cid, E.1    Sharman, K.2    Esparcia-Alcazar, A.3
  • 27
    • 33845346175 scopus 로고    scopus 로고
    • Multi objective support vector machines
    • Y. Jin, Ed. New York: Springer-Verlag, ch. 9
    • T. Suttorp and C. Igel, "Multi objective support vector machines," in Multi-Objective Machine Learning, Y. Jin, Ed. New York: Springer-Verlag, 2006, ch. 9, pp. 199-220.
    • (2006) Multi-Objective Machine Learning , pp. 199-220
    • Suttorp, T.1    Igel, C.2
  • 28
    • 47249113963 scopus 로고    scopus 로고
    • GP classification under imbalanced data sets: Active sub-sampling and AUC approximation
    • J. Doucette and M. I. Heywood, "GP classification under imbalanced data sets: Active sub-sampling and AUC approximation," in Proc. 11th EuroGP, 2008, pp. 266-277.
    • (2008) Proc. 11th EuroGP , pp. 266-277
    • Doucette, J.1    Heywood, M.I.2
  • 29
    • 27144524459 scopus 로고    scopus 로고
    • Class imbalance problem in UCS classifier system: Fitness adaptation
    • Sep
    • A. Orriols and E. Bernado-Mansilla, "Class imbalance problem in UCS classifier system: Fitness adaptation," in Proc. IEEE Congr. Evol. Comput., Sep. 2005, vol. 1, pp. 604-611.
    • (2005) Proc. IEEE Congr. Evol. Comput. , vol.1 , pp. 604-611
    • Orriols, A.1    Bernado-Mansilla, E.2
  • 30
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M. Weiss and F. Provost, "Learning when training data are costly: The effect of class distribution on tree induction," J. Artif. Intell. Res., vol. 19, pp. 315-354, 2003.
    • (2003) J. Artif. Intell. Res. , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 31
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Nov
    • N. Japcowicz and S. Stephen, "The class imbalance problem: A systematic study," Intell. Data Anal., vol. 6, no. 5, pp. 429-450, Nov. 2002.
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-450
    • Japcowicz, N.1    Stephen, S.2
  • 33
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling for classimbalance learning
    • Apr
    • X.-Y. Liu, J. Wu, and Z.-H. Zhou, "Exploratory undersampling for classimbalance learning," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 2, pp. 539-550, Apr. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.39 , Issue.2 , pp. 539-550
    • Liu, X.-Y.1    Wu, J.2    Zhou, Z.-H.3
  • 34
    • 28344435224 scopus 로고    scopus 로고
    • An application of classification analysis for skewed class distribution in therapeutic drug monitoring-The case of vancomycin
    • J.-X. Chen, T.-H. Cheng, A. L. F. Chan, and H.-Y. Wang, "An application of classification analysis for skewed class distribution in therapeutic drug monitoring-The case of vancomycin," in Proc. IDEAS Workshop Med. Inf. Syst.: Digital Hospital, 2004, pp. 35-39.
    • (2004) Proc. IDEAS Workshop Med. Inf. Syst.: Digital Hospital , pp. 35-39
    • Chen, J.-X.1    Cheng, T.-H.2    Chan, A.L.F.3    Wang, H.-Y.4
  • 36
    • 33745218481 scopus 로고    scopus 로고
    • Balancing strategies and class overlapping
    • LNCS, A. F. Famili, J. N. Kok, J. M. Peña, A. Siebes, and A. J. Feelders, Eds
    • G. Batista, R. C. Prati, and M. C. Monard, "Balancing strategies and class overlapping," in Proc. 6th Int. Symp. IDA-Advances in Intelligent Data Analysis VI, vol. 3646, LNCS, A. F. Famili, J. N. Kok, J. M. Peña, A. Siebes, and A. J. Feelders, Eds., 2005, pp. 24-35.
    • (2005) Proc. 6th Int. Symp. IDA-Advances in Intelligent Data Analysis VI , vol.3646 , pp. 24-35
    • Batista, G.1    Prati, R.C.2    Monard, M.C.3
  • 37
    • 70449888110 scopus 로고    scopus 로고
    • Improving the classification accuracy of RBF and MLP neural networks trained with imbalanced samples
    • Sep
    • R. Alejo, V. Garcia, J. M. Sotoca, R. Mollineda, and J. S. Sanchez, "Improving the classification accuracy of RBF and MLP neural networks trained with imbalanced samples," in Proc. 7th Int. Conf. IDEAL, Sep. 2006, pp. 467-471.
    • (2006) Proc. 7th Int. Conf. IDEAL , pp. 467-471
    • Alejo, R.1    Garcia, V.2    Sotoca, J.M.3    Mollineda, R.4    Sanchez, J.S.5
  • 39
    • 34547125332 scopus 로고    scopus 로고
    • Scaling genetic programming to large datasets using hierarchical dynamic subset selection
    • Aug
    • R. Curry, P. Lichodzijewski, and M. Heywood, "Scaling genetic programming to large datasets using hierarchical dynamic subset selection," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 4, pp. 1065-1073, Aug. 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.37 , Issue.4 , pp. 1065-1073
    • Curry, R.1    Lichodzijewski, P.2    Heywood, M.3
  • 40
    • 85008255983 scopus 로고
    • Dynamic training subset selection for supervised learning in genetic programming
    • LNCS, Y. Davidor, H.-P. Schwefel, and R. Manner, Eds
    • C. Gathercole and P. Ross, "Dynamic training subset selection for supervised learning in genetic programming," in Proc. PPSN III, vol. 866, LNCS, Y. Davidor, H.-P. Schwefel, and R. Manner, Eds., 1994, pp. 312-321.
    • (1994) Proc. PPSN III , vol.866 , pp. 312-321
    • Gathercole, C.1    Ross, P.2
  • 41
    • 84859005998 scopus 로고    scopus 로고
    • Ensemble approach for the classification of imbalanced data
    • LNAI
    • V. Nikulin, G. McLachlan, and S. K. Ng, "Ensemble approach for the classification of imbalanced data," in Proc. 22nd Australasian Joint Conf. AI, vol. 5866, LNAI, 2009, pp. 260-269.
    • (2009) Proc. 22nd Australasian Joint Conf. AI , vol.5866 , pp. 260-269
    • Nikulin, V.1    McLachlan, G.2    Ng, S.K.3
  • 44
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Apr
    • J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, no. 1, pp. 29-36, Apr. 1982.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 45
    • 21844463439 scopus 로고    scopus 로고
    • Model selection via the AUC
    • Banff, AB, Canada
    • S. Rosset, "Model selection via the AUC," in Proc. 21st Int. Conf. Mach. Learn., Banff, AB, Canada, 2004, pp. 89-97.
    • (2004) Proc. 21st Int. Conf. Mach. Learn. , pp. 89-97
    • Rosset, S.1
  • 46
    • 65649085468 scopus 로고    scopus 로고
    • Constructing new and better evaluation measures for machine learning
    • J. Huang and C. X. Ling, "Constructing new and better evaluation measures for machine learning," in Proc. 20th IJCAI, 2007, pp. 859-864.
    • (2007) Proc. 20th IJCAI , pp. 859-864
    • Huang, J.1    Ling, C.X.2
  • 47
    • 1942451946 scopus 로고    scopus 로고
    • Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic
    • L. Yan, R. Dodier, M. C. Mozer, and R. Wolniewicz, "Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistic," in Proc. 20th ICML, 2003, pp. 848-855.
    • (2003) Proc. 20th ICML , pp. 848-855
    • Yan, L.1    Dodier, R.2    Mozer, M.C.3    Wolniewicz, R.4
  • 48
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • Jan
    • C. Ferri, J. Hernández-Orallo, and R. Modroiu, "An experimental comparison of performance measures for classification," Pattern Recognit. Lett., vol. 30, no. 1, pp. 27-38, Jan. 2009.
    • (2009) Pattern Recognit. Lett. , vol.30 , Issue.1 , pp. 27-38
    • Ferri, C.1    Hernández-Orallo, J.2    Modroiu, R.3
  • 49
    • 38349082433 scopus 로고    scopus 로고
    • Fitness functions in genetic programming for classification with unbalanced data
    • LNCS
    • G. Patterson and M. Zhang, "Fitness functions in genetic programming for classification with unbalanced data," in Proc. 20th Australian Joint Conf. Artif. Intell., vol. 4830, LNCS, 2007, pp. 769-775.
    • (2007) Proc. 20th Australian Joint Conf. Artif. Intell. , vol.4830 , pp. 769-775
    • Patterson, G.1    Zhang, M.2
  • 51
    • 84859002798 scopus 로고    scopus 로고
    • Evolving ensembles in multiobjective genetic programming for classification with unbalanced data
    • U. Bhowan, M. Zhang, and M. Johnston, "Evolving ensembles in multiobjective genetic programming for classification with unbalanced data," in Proc. Genetic Evol. Comput. Conf., 2011, pp. 1331-1339.
    • Proc. Genetic Evol. Comput. Conf , vol.2011 , pp. 1331-1339
    • Bhowan, U.1    Zhang, M.2    Johnston, M.3
  • 52
    • 40949103072 scopus 로고    scopus 로고
    • Multi-objective competitive coevolution for efficient GP classifier problem decomposition
    • Man, Cybern
    • A. McIntyre and M. Heywood, "Multi-objective competitive coevolution for efficient GP classifier problem decomposition," in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2007, pp. 1930-1937.
    • (2007) Proc. IEEE Int. Conf. Syst. , pp. 1930-1937
    • McIntyre, A.1    Heywood, M.2
  • 53
    • 33846581659 scopus 로고    scopus 로고
    • An experimental study on pedestrian classification
    • Nov
    • S. Munder and D. Gavrila, "An experimental study on pedestrian classification," IEEE Trans. Pattern Anal.Mach. Intell., vol. 28, no. 11, pp. 1863-1868, Nov. 2006.
    • (2006) IEEE Trans. Pattern Anal.Mach. Intell. , vol.28 , Issue.11 , pp. 1863-1868
    • Munder, S.1    Gavrila, D.2
  • 54
    • 33646532047 scopus 로고    scopus 로고
    • Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification
    • Aug
    • M. Zhang and W. Smart, "Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification," Pattern Recognit. Lett., vol. 27, no. 11, pp. 1266-1274, Aug. 2006.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.11 , pp. 1266-1274
    • Zhang, M.1    Smart, W.2
  • 55
    • 78650790726 scopus 로고    scopus 로고
    • A comparison of classification strategies in genetic programming with unbalanced data
    • LNCS, J. Li, Ed
    • U. Bhowan, M. Johnston, and M. Zhang, "A comparison of classification strategies in genetic programming with unbalanced data," in Proc. 23rd Australasian Joint Conf. Artif. Intell., vol. 6464, LNCS, J. Li, Ed., 2010, pp. 243-252.
    • (2010) Proc. 23rd Australasian Joint Conf. Artif. Intell. , vol.6464 , pp. 243-252
    • Bhowan, U.1    Johnston, M.2    Zhang, M.3
  • 56
    • 70450059660 scopus 로고    scopus 로고
    • Differentiating between individual class performance in genetic programming fitness for classification with unbalanced data
    • U. Bhowan, M. Johnston, and M. Zhang, "Differentiating between individual class performance in genetic programming fitness for classification with unbalanced data," in Proc. IEEE CEC, 2009, pp. 2802-2809.
    • (2009) Proc. IEEE CEC , pp. 2802-2809
    • Bhowan, U.1    Johnston, M.2    Zhang, M.3
  • 57
    • 64549090220 scopus 로고    scopus 로고
    • Using enhanced genetic programming techniques for evolving classifiers in the context of medical diagnosis
    • Jun
    • S. M. Winkler, M. Affenzeller, and S. Wagner, "Using enhanced genetic programming techniques for evolving classifiers in the context of medical diagnosis," Genetic Program. Evolvable Mach., vol. 10, no. 2, pp. 111-140, Jun. 2009.
    • (2009) Genetic Program. Evolvable Mach. , vol.10 , Issue.2 , pp. 111-140
    • Winkler, S.M.1    Affenzeller, M.2    Wagner, S.3
  • 58
    • 84858999492 scopus 로고    scopus 로고
    • Genetic programming for improved receiver operating characteristics
    • LNCS, J. Kittler and F. Roli, Eds
    • W. B. Langdon and B. Buxton, "Genetic programming for improved receiver operating characteristics," in Proc. Multiple Classifier Syst., vol. 2096, LNCS, J. Kittler and F. Roli, Eds., 2001, pp. 68-77.
    • (2001) Proc. Multiple Classifier Syst. , vol.2096 , pp. 68-77
    • Langdon, W.B.1    Buxton, B.2
  • 59
    • 0003790115 scopus 로고    scopus 로고
    • The effect of class distribution on classifier learning: An empirical study
    • Rutgers Univ., New Brunswick, NJ, Tech. Rep. ML-TR-44
    • G. Weiss and F. Provost, "The effect of class distribution on classifier learning: An empirical study," Dept. Comput. Sci., Rutgers Univ., New Brunswick, NJ, Tech. Rep. ML-TR-44, 2001.
    • (2001) Dept. Comput. Sci.
    • Weiss, G.1    Provost, F.2
  • 60
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based rankings
    • Sep
    • F. Provost and P. Domingos, "Tree induction for probability-based rankings," Mach. Learn., vol. 52, no. 3, pp. 199-215, Sep. 2003.
    • (2003) Mach. Learn. , vol.52 , Issue.3 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 64
    • 0002467262 scopus 로고
    • Components in regression
    • Mar
    • J. W. Tukey, "Components in regression," Biometrics, vol. 7, no. 1, pp. 33-69, Mar. 1951.
    • (1951) Biometrics , vol.7 , Issue.1 , pp. 33-69
    • Tukey, J.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.