메뉴 건너뛰기




Volumn 67, Issue 4, 2012, Pages 2433-2439

Stability analysis of Caputo fractional-order nonlinear systems revisited

Author keywords

Bellman Gronwall's inequality; Bihari's inequality; Comparison theorem; Fractional order nonlinear system; Lyapunov direct method

Indexed keywords

BELLMAN-GRONWALL'S INEQUALITY; BIHARI'S INEQUALITY; COMPARISON THEOREM; FRACTIONAL-ORDER SYSTEMS; LYAPUNOV DIRECT METHOD; STABILITY ANALYSIS;

EID: 84858841611     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-011-0157-5     Document Type: Article
Times cited : (292)

References (28)
  • 5
    • 0001691616 scopus 로고
    • Observation of anomalous diffusion and Levy flights in a two-dimensional rotating flow
    • 10.1103/PhysRevLett.71.3975
    • T.H. Solomon E.R. Weeks H.L. Swinney 1993 Observation of anomalous diffusion and Levy flights in a two-dimensional rotating flow Phys. Rev. Lett. 71 24 3975 3978 10.1103/PhysRevLett.71.3975
    • (1993) Phys. Rev. Lett. , vol.71 , Issue.24 , pp. 3975-3978
    • Solomon, T.H.1    Weeks, E.R.2    Swinney, H.L.3
  • 6
    • 1842531858 scopus 로고    scopus 로고
    • Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation
    • 11107/1-8 2097999 10.1103/PhysRevE.69.011107
    • E. Scalas R. Gorenflo F. Mainardi 2004 Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation Phys. Rev. E 69 011107/1-8 2097999 10.1103/PhysRevE.69.011107
    • (2004) Phys. Rev. E , vol.690
    • Scalas, E.1    Gorenflo, R.2    Mainardi, F.3
  • 7
    • 52549095901 scopus 로고    scopus 로고
    • Fractional control of heat diffusion systems
    • 2464537 1210.80008 10.1007/s11071-007-9322-2
    • I.S. Jesus J.A.T. Machado 2008 Fractional control of heat diffusion systems Nonlinear Dyn. 54 3 263 282 2464537 1210.80008 10.1007/s11071-007-9322-2
    • (2008) Nonlinear Dyn. , vol.54 , Issue.3 , pp. 263-282
    • Jesus, I.S.1    MacHado, J.A.T.2
  • 8
    • 15544372160 scopus 로고    scopus 로고
    • Continued fraction expansion approaches to discretizing fractional order derivatives-An expository review
    • 2112172 1134.93300 10.1007/s11071-004-3752-x
    • Y.Q. Chen B.M. Vinagre I. Podlubny 2004 Continued fraction expansion approaches to discretizing fractional order derivatives-An expository review Nonlinear Dyn. 38 1-4 155 170 2112172 1134.93300 10.1007/s11071-004-3752-x
    • (2004) Nonlinear Dyn. , vol.38 , Issue.14 , pp. 155-170
    • Chen, Y.Q.1    Vinagre, B.M.2    Podlubny, I.3
  • 9
    • 33750901303 scopus 로고    scopus 로고
    • A numerical scheme for the solution of multi-order fractional differential equations
    • 2292084 1107.65119 10.1016/j.amc.2006.04.037
    • S. Momani 2006 A numerical scheme for the solution of multi-order fractional differential equations Appl. Math. Comput. 182 761 786 2292084 1107.65119 10.1016/j.amc.2006.04.037
    • (2006) Appl. Math. Comput. , vol.182 , pp. 761-786
    • Momani, S.1
  • 10
    • 42449096849 scopus 로고    scopus 로고
    • On exact solutions of a class of fractional Euler-Lagrange equations
    • 2401415 1170.70328 10.1007/s11071-007-9281-7
    • D. Baleanu J.J. Trujillo 2008 On exact solutions of a class of fractional Euler-Lagrange equations Nonlinear Dyn. 52 4 331 335 2401415 1170.70328 10.1007/s11071-007-9281-7
    • (2008) Nonlinear Dyn. , vol.52 , Issue.4 , pp. 331-335
    • Baleanu, D.1    Trujillo, J.J.2
  • 11
    • 0001110962 scopus 로고    scopus 로고
    • Coprime factorizations and stability of fractional differential systems
    • 1831424 0985.93048 10.1016/S0167-6911(00)00050-5
    • C. Bonnet J.R. Partington 2000 Coprime factorizations and stability of fractional differential systems Syst. Control Lett. 41 167 174 1831424 0985.93048 10.1016/S0167-6911(00)00050-5
    • (2000) Syst. Control Lett. , vol.41 , pp. 167-174
    • Bonnet, C.1    Partington, J.R.2
  • 12
    • 33947133956 scopus 로고    scopus 로고
    • Stability analysis of linear fractional differential system with multiple time-delays
    • 1185.34115 10.1007/s11071-006-9094-0
    • W.H. Deng C.P. Li J.H. Lü 2007 Stability analysis of linear fractional differential system with multiple time-delays Nonlinear Dyn. 48 409 416 1185.34115 10.1007/s11071-006-9094-0
    • (2007) Nonlinear Dyn. , vol.48 , pp. 409-416
    • Deng, W.H.1    Li, C.P.2    Lü, J.H.3
  • 13
    • 34247212711 scopus 로고    scopus 로고
    • Remarks on fractional derivatives
    • 2323083 1125.26009 10.1016/j.amc.2006.08.163
    • C.P. Li W.H. Deng 2007 Remarks on fractional derivatives Appl. Math. Comput. 187 777 784 2323083 1125.26009 10.1016/j.amc.2006.08.163
    • (2007) Appl. Math. Comput. , vol.187 , pp. 777-784
    • Li, C.P.1    Deng, W.H.2
  • 14
    • 76649139783 scopus 로고    scopus 로고
    • LMI stability conditions for fractional order systems
    • 2595931 1189.34020 10.1016/j.camwa.2009.08.003
    • J. Sabatier M. Moze Ch. Farges 2010 LMI stability conditions for fractional order systems Comput. Math. Appl. 59 1594 1609 2595931 1189.34020 10.1016/j.camwa.2009.08.003
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1594-1609
    • Sabatier, J.1    Moze, M.2    Farges, Ch.3
  • 15
    • 79959196930 scopus 로고    scopus 로고
    • Stability analysis of fractional differential systems with order lying in 1,2
    • 213485 10.1155/2011/213485
    • F. Zhang C.P. Li 2011 Stability analysis of fractional differential systems with order lying in 1,2 Adv. Differ. Equ. 2011 213485 10.1155/2011/213485
    • (2011) Adv. Differ. Equ. , vol.2011
    • Zhang, F.1    Li, C.P.2
  • 16
    • 77956773241 scopus 로고    scopus 로고
    • Mittag-Leffler stability theorem for fractional nonlinear systems with delay
    • 108651 10.1155/2010/108651 2674391 10.1155/2010/108651
    • S.J. Sadati D. Baleanu A. Ranjbar R. Ghaderi T. Abdeljawad 2010 Mittag-Leffler stability theorem for fractional nonlinear systems with delay Abstr. Appl. Anal. 2010 108651 10.1155/2010/108651 2674391 10.1155/2010/108651
    • (2010) Abstr. Appl. Anal. , vol.2010
    • Sadati, S.J.1    Baleanu, D.2    Ranjbar, A.3    Ghaderi, R.4    Abdeljawad, T.5
  • 17
    • 84858820087 scopus 로고    scopus 로고
    • Finite-time stability analysis of fractional-order with multi-state time delay
    • L. Liu S. Zhong 2011 Finite-time stability analysis of fractional-order with multi-state time delay Word Acad. Sci., Eng. Technol. 76 874 877
    • (2011) Word Acad. Sci., Eng. Technol. , vol.76 , pp. 874-877
    • Liu, L.1    Zhong, S.2
  • 18
    • 84858848278 scopus 로고    scopus 로고
    • Finite-time stability analysis of fractional order time delay systems: Bellman-Gronwall's approach
    • M. Lazarević 2007 Finite-time stability analysis of fractional order time delay systems: Bellman-Gronwall's approach Sci. Tech. Rev. 7 8 15
    • (2007) Sci. Tech. Rev. , vol.7 , pp. 8-15
    • Lazarević, M.1
  • 19
    • 57949095998 scopus 로고    scopus 로고
    • Stability analysis of a class of nonlinear fractional-order systems
    • 10.1109/TCSII.2008.2002571
    • X.J. Wen Z.M. Wu J.G. Lu 2008 Stability analysis of a class of nonlinear fractional-order systems IEEE Trans. Circuits Syst. II, Express Briefs 55 1178 1182 10.1109/TCSII.2008.2002571
    • (2008) IEEE Trans. Circuits Syst. II, Express Briefs , vol.55 , pp. 1178-1182
    • Wen, X.J.1    Wu, Z.M.2    Lu, J.G.3
  • 20
    • 76449092011 scopus 로고    scopus 로고
    • 2595955 1189.34015 10.1016/j.camwa.2009.08.019
    • Y. Li Y.Q. Chen I. Podlubny 2010 Comput. Math. Appl. 59 5 1810 1821 2595955 1189.34015 10.1016/j.camwa.2009.08.019
    • (2010) Comput. Math. Appl. , vol.59 , Issue.5 , pp. 1810-1821
    • Li, Y.1    Chen, Y.Q.2    Podlubny, I.3
  • 21
    • 67649626081 scopus 로고    scopus 로고
    • Mittag-Leffler stability of fractional order nonlinear dynamic systems
    • 1185.93062 10.1016/j.automatica.2009.04.003
    • Y. Li Y.Q. Chen I. Podlubny 2009 Mittag-Leffler stability of fractional order nonlinear dynamic systems Automatica 45 1965 1969 1185.93062 10.1016/j.automatica.2009.04.003
    • (2009) Automatica , vol.45 , pp. 1965-1969
    • Li, Y.1    Chen, Y.Q.2    Podlubny, I.3
  • 22
    • 0002731965 scopus 로고    scopus 로고
    • Stability result on fractional differential equations with applications to control processing
    • Lille, France July
    • Matignon, D.: Stability result on fractional differential equations with applications to control processing. In: IMACS-SMC Proceedings, Lille, France, July, pp. 963-968 (1996)
    • (1996) IMACS-SMC Proceedings , pp. 963-968
    • Matignon, D.1
  • 24
  • 25
    • 24944498872 scopus 로고
    • Weakly singular discrete Gronwall inequalities
    • 880357 10.1002/zamm.19860661107
    • J. Dixon S. McKee 1986 Weakly singular discrete Gronwall inequalities Z. Angew. Math. Mech. 11 535 544 880357 10.1002/zamm.19860661107
    • (1986) Z. Angew. Math. Mech. , vol.11 , pp. 535-544
    • Dixon, J.1    McKee, S.2
  • 26
    • 0004178386 scopus 로고    scopus 로고
    • Prentice Hall Englewood Cliffs 0-13-228024-8
    • Khalil, H.K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (1996). ISBN 0-13-228024-8
    • (1996) Nonlinear Systems
    • Khalil, H.K.1
  • 27
    • 77958514995 scopus 로고    scopus 로고
    • Fractional order sliding mode control with reaching low approach
    • doi: 10.3906/elk-0906-3
    • Mehmet önder, E.F.E.: Fractional order sliding mode control with reaching low approach. Turk J. Electr. Eng. Comput. Sci. 18(5) (2010). doi: 10.3906/elk-0906-3
    • (2010) Turk J. Electr. Eng. Comput. Sci. , vol.18 , Issue.5
    • Mehmet Önder, E.F.E.1
  • 28
    • 70350418135 scopus 로고    scopus 로고
    • Fuzzy fractional order sliding mode controller for nonlinear systems
    • 2557005 1221.93140 10.1016/j.cnsns.2009.05.025
    • H. Delavari R. Ghaderi A. Ranjbar S. Momani 2010 Fuzzy fractional order sliding mode controller for nonlinear systems Commun. Nonlinear Sci. Numer. Simul. 15 963 978 2557005 1221.93140 10.1016/j.cnsns.2009.05.025
    • (2010) Commun. Nonlinear Sci. Numer. Simul. , vol.15 , pp. 963-978
    • Delavari, H.1    Ghaderi, R.2    Ranjbar, A.3    Momani, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.