메뉴 건너뛰기




Volumn 30, Issue 4, 2012, Pages 191-197

Genetic engineering in biomimetic composites

Author keywords

[No Author keywords available]

Indexed keywords

BIOMIMETICS;

EID: 84858700153     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2012.01.001     Document Type: Review
Times cited : (24)

References (80)
  • 1
    • 0037126789 scopus 로고    scopus 로고
    • Super-hydrophobic surfaces: from natural to artificial
    • Feng L., et al. Super-hydrophobic surfaces: from natural to artificial. Adv. Mat. 2002, 14:1857-1860.
    • (2002) Adv. Mat. , vol.14 , pp. 1857-1860
    • Feng, L.1
  • 3
    • 0042467476 scopus 로고    scopus 로고
    • Photonic structures in biology
    • Vukusic P., Sambles J.R. Photonic structures in biology. Nature 2003, 424:852.
    • (2003) Nature , vol.424 , pp. 852
    • Vukusic, P.1    Sambles, J.R.2
  • 4
    • 69349088718 scopus 로고    scopus 로고
    • Merger of structure and material in nacre and bone - perspectives on de novo biomimetic materials
    • Espinosa H.D., et al. Merger of structure and material in nacre and bone - perspectives on de novo biomimetic materials. Prog. Mater. Sci. 2009, 54:1059-1100.
    • (2009) Prog. Mater. Sci. , vol.54 , pp. 1059-1100
    • Espinosa, H.D.1
  • 5
    • 22044457920 scopus 로고    scopus 로고
    • Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale
    • Aizenberg J., et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 2005, 309:275-278.
    • (2005) Science , vol.309 , pp. 275-278
    • Aizenberg, J.1
  • 6
    • 35548930317 scopus 로고    scopus 로고
    • Biological materials: structure and mechanical properties
    • Meyers M.A., et al. Biological materials: structure and mechanical properties. Prog. Mat. Sci. 2008, 53:1-206.
    • (2008) Prog. Mat. Sci. , vol.53 , pp. 1-206
    • Meyers, M.A.1
  • 7
    • 2342524557 scopus 로고    scopus 로고
    • Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone
    • Li X., et al. Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 2004, 4:613-617.
    • (2004) Nano Lett. , vol.4 , pp. 613-617
    • Li, X.1
  • 8
    • 0027128094 scopus 로고
    • Innovative materials processing strategies: a biomimetic approach
    • Heuer A.H., et al. Innovative materials processing strategies: a biomimetic approach. Science 1992, 255:1098-1105.
    • (1992) Science , vol.255 , pp. 1098-1105
    • Heuer, A.H.1
  • 9
    • 0038789083 scopus 로고    scopus 로고
    • Materials science: synthetic sea shell
    • Rubner M. Materials science: synthetic sea shell. Nature 2003, 423:925-926.
    • (2003) Nature , vol.423 , pp. 925-926
    • Rubner, M.1
  • 10
    • 57349107721 scopus 로고    scopus 로고
    • Tough, bio-inspired hybrid materials
    • Munch E., et al. Tough, bio-inspired hybrid materials. Science 2008, 322:1516-1520.
    • (2008) Science , vol.322 , pp. 1516-1520
    • Munch, E.1
  • 11
    • 0038109183 scopus 로고    scopus 로고
    • Nanostructured artificial nacre
    • Tang Z., et al. Nanostructured artificial nacre. Nat Mater 2003, 2:413-418.
    • (2003) Nat Mater , vol.2 , pp. 413-418
    • Tang, Z.1
  • 12
    • 77955573381 scopus 로고    scopus 로고
    • Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways
    • Walther A., et al. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 2010, 10:2742-2748.
    • (2010) Nano Lett. , vol.10 , pp. 2742-2748
    • Walther, A.1
  • 13
    • 79551576496 scopus 로고    scopus 로고
    • Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials
    • Espinosa H.D., et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat Commun 2011, 2:173.
    • (2011) Nat Commun , vol.2 , pp. 173
    • Espinosa, H.D.1
  • 14
    • 39749098410 scopus 로고    scopus 로고
    • Bioinspired design and assembly of platelet reinforced polymer films
    • Bonderer L.J., et al. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319:1069-1073.
    • (2008) Science , vol.319 , pp. 1069-1073
    • Bonderer, L.J.1
  • 15
    • 11244313019 scopus 로고    scopus 로고
    • On the role of interface polymers for the mechanics of natural polymeric composites
    • Fratzl P., et al. On the role of interface polymers for the mechanics of natural polymeric composites. Phys. Chem. Chem. Phys. 2004, 6:5575-5579.
    • (2004) Phys. Chem. Chem. Phys. , vol.6 , pp. 5575-5579
    • Fratzl, P.1
  • 16
    • 0017341177 scopus 로고
    • Mechanical properties of mother of pearl in tension
    • Currey J.D. Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. Ser. B 1977, 196:443-463.
    • (1977) Proc. R. Soc. Lond. Ser. B , vol.196 , pp. 443-463
    • Currey, J.D.1
  • 17
    • 70249111462 scopus 로고    scopus 로고
    • An acidic matrix protein, Pif, is a key macromolecule for nacre formation
    • Suzuki M., et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 2009, 325:1388-1390.
    • (2009) Science , vol.325 , pp. 1388-1390
    • Suzuki, M.1
  • 18
    • 0034674709 scopus 로고    scopus 로고
    • Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif
    • Suetake T., et al. Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J. Biol. Chem. 2000, 275:17929-17932.
    • (2000) J. Biol. Chem. , vol.275 , pp. 17929-17932
    • Suetake, T.1
  • 19
    • 80052454436 scopus 로고    scopus 로고
    • Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose
    • Laaksonen P., et al. Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. Angew. Chem. Int. Ed. 2011, 50:8688-8691.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 8688-8691
    • Laaksonen, P.1
  • 20
    • 4644247411 scopus 로고    scopus 로고
    • Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems
    • Linder M.B., et al. Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry 2004, 43:11873-11882.
    • (2004) Biochemistry , vol.43 , pp. 11873-11882
    • Linder, M.B.1
  • 21
    • 0036845949 scopus 로고    scopus 로고
    • Cellulose-binding domains. Biotechnological applications
    • Levy I., Shoseyov O. Cellulose-binding domains. Biotechnological applications. Biotechnol. Adv. 2002, 20:191-213.
    • (2002) Biotechnol. Adv. , vol.20 , pp. 191-213
    • Levy, I.1    Shoseyov, O.2
  • 22
    • 0036325516 scopus 로고    scopus 로고
    • Recombinant cellulose crosslinking protein: a novel paper-modification biomaterial
    • Levy I., et al. Recombinant cellulose crosslinking protein: a novel paper-modification biomaterial. Cellulose 2002, 9:91-98.
    • (2002) Cellulose , vol.9 , pp. 91-98
    • Levy, I.1
  • 23
    • 0346500587 scopus 로고    scopus 로고
    • Engineering a bifunctional starch-cellulose cross-bridge protein
    • Levy I., et al. Engineering a bifunctional starch-cellulose cross-bridge protein. Biomaterials 2004, 25:1841-1849.
    • (2004) Biomaterials , vol.25 , pp. 1841-1849
    • Levy, I.1
  • 25
    • 0029830144 scopus 로고    scopus 로고
    • Characterization of a double cellulose-binding domain
    • Linder M., et al. Characterization of a double cellulose-binding domain. J. Biol. Chem. 1996, 271:21268-21272.
    • (1996) J. Biol. Chem. , vol.271 , pp. 21268-21272
    • Linder, M.1
  • 26
    • 0009431135 scopus 로고    scopus 로고
    • Design strategies in mineralized biological materials
    • Weiner S., Addadi L. Design strategies in mineralized biological materials. J. Mater. Chem. 1997, 7:689-702.
    • (1997) J. Mater. Chem. , vol.7 , pp. 689-702
    • Weiner, S.1    Addadi, L.2
  • 27
    • 33847125639 scopus 로고    scopus 로고
    • The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation
    • Huang J., et al. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 2007, 28:2358-2367.
    • (2007) Biomaterials , vol.28 , pp. 2358-2367
    • Huang, J.1
  • 28
    • 79955440403 scopus 로고    scopus 로고
    • Elastin-like polypeptide based hydroxyapatite bionanocomposites
    • Wang E., et al. Elastin-like polypeptide based hydroxyapatite bionanocomposites. Biomacromolecules 2011, 12:672-680.
    • (2011) Biomacromolecules , vol.12 , pp. 672-680
    • Wang, E.1
  • 29
    • 79958774031 scopus 로고    scopus 로고
    • Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation
    • Xu H., et al. Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation. Biomacromolecules 2011, 12:2193-2199.
    • (2011) Biomacromolecules , vol.12 , pp. 2193-2199
    • Xu, H.1
  • 30
    • 77956181774 scopus 로고    scopus 로고
    • Composite materials based on silk proteins
    • Hardy J.G., Scheibel T.R. Composite materials based on silk proteins. Prog. Polym. Sci. 2010, 35:1093-1115.
    • (2010) Prog. Polym. Sci. , vol.35 , pp. 1093-1115
    • Hardy, J.G.1    Scheibel, T.R.2
  • 31
    • 0001520971 scopus 로고    scopus 로고
    • Structure and physical properties of silk fibroin/polyacrylamide blend films
    • Freddi G., et al. Structure and physical properties of silk fibroin/polyacrylamide blend films. J. Appl. Polym. Sci. 1999, 71:1563-1571.
    • (1999) J. Appl. Polym. Sci. , vol.71 , pp. 1563-1571
    • Freddi, G.1
  • 32
    • 31544476834 scopus 로고    scopus 로고
    • Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process
    • Ayutsede J., et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 2005, 7:208-214.
    • (2005) Biomacromolecules , vol.7 , pp. 208-214
    • Ayutsede, J.1
  • 33
    • 0343247806 scopus 로고    scopus 로고
    • The roles and function of cellulose-binding domains
    • Linder M., Teeri T.T. The roles and function of cellulose-binding domains. J. Biotechnol. 1997, 57:15-28.
    • (1997) J. Biotechnol. , vol.57 , pp. 15-28
    • Linder, M.1    Teeri, T.T.2
  • 34
    • 68949194700 scopus 로고    scopus 로고
    • Hydrophobins: proteins that self assemble at interfaces
    • Linder M.B. Hydrophobins: proteins that self assemble at interfaces. Curr. Opin. Colloid Interface Sci. 2009, 14:356-363.
    • (2009) Curr. Opin. Colloid Interface Sci. , vol.14 , pp. 356-363
    • Linder, M.B.1
  • 35
    • 77954328436 scopus 로고    scopus 로고
    • Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins
    • Laaksonen P., et al. Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins. Angew. Chem. Int. Ed. 2010, 49:4946-4949.
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 4946-4949
    • Laaksonen, P.1
  • 36
    • 0037193987 scopus 로고    scopus 로고
    • Structure and function of antifreeze proteins
    • Davies P.L., et al. Structure and function of antifreeze proteins. Philos. Trans. R. Soc. Lond. Ser. B 2002, 357:927-935.
    • (2002) Philos. Trans. R. Soc. Lond. Ser. B , vol.357 , pp. 927-935
    • Davies, P.L.1
  • 37
    • 67349139852 scopus 로고    scopus 로고
    • Covalent modification of chitin with silk-derivatives acts as an amphiphilic self-organizing template in nacre biomineralisation
    • Weiss I.M., et al. Covalent modification of chitin with silk-derivatives acts as an amphiphilic self-organizing template in nacre biomineralisation. J. Struct. Biol. 2009, 167:68-75.
    • (2009) J. Struct. Biol. , vol.167 , pp. 68-75
    • Weiss, I.M.1
  • 38
    • 21144436393 scopus 로고    scopus 로고
    • Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida
    • Gotliv B.-A., et al. Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. Chembiochem 2005, 6:304-314.
    • (2005) Chembiochem , vol.6 , pp. 304-314
    • Gotliv, B.-A.1
  • 39
    • 57349142352 scopus 로고    scopus 로고
    • 3 mineralization using designer molecules and interfaces
    • 3 mineralization using designer molecules and interfaces. Chem. Rev. 2008, 108:4499-4550.
    • (2008) Chem. Rev. , vol.108 , pp. 4499-4550
    • Sommerdijk, N.A.J.M.1    With, G.D.2
  • 40
    • 57349116196 scopus 로고    scopus 로고
    • Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel
    • Palmer L.C., et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 2008, 108:4754-4783.
    • (2008) Chem. Rev. , vol.108 , pp. 4754-4783
    • Palmer, L.C.1
  • 41
    • 77957923911 scopus 로고    scopus 로고
    • Effect of proteins on the synthesis and assembly of calcium phosphate nanomaterials
    • Cai Y., Yao J. Effect of proteins on the synthesis and assembly of calcium phosphate nanomaterials. Nanoscale 2010, 2:1842-1848.
    • (2010) Nanoscale , vol.2 , pp. 1842-1848
    • Cai, Y.1    Yao, J.2
  • 42
    • 77957193859 scopus 로고    scopus 로고
    • Protein localization in silica nanospheres derived via biomimetic mineralization
    • Cardoso M.B., et al. Protein localization in silica nanospheres derived via biomimetic mineralization. Adv. Funct. Mater. 2010, 20:3031-3038.
    • (2010) Adv. Funct. Mater. , vol.20 , pp. 3031-3038
    • Cardoso, M.B.1
  • 43
    • 0035941074 scopus 로고    scopus 로고
    • Self-assembly and mineralization of peptide-amphiphile nanofibers
    • Hartgerink J.D., et al. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294:1684-11684.
    • (2001) Science , vol.294 , pp. 1684-11684
    • Hartgerink, J.D.1
  • 44
    • 78349300242 scopus 로고    scopus 로고
    • Nanofibrous bio-inorganic hybrid structures formed through self-assembly and oriented mineralization of genetically engineered phage nanofibers
    • He T., et al. Nanofibrous bio-inorganic hybrid structures formed through self-assembly and oriented mineralization of genetically engineered phage nanofibers. Small 2010, 6:2230-2235.
    • (2010) Small , vol.6 , pp. 2230-2235
    • He, T.1
  • 45
    • 67349243000 scopus 로고    scopus 로고
    • Biomorphic mineralization: from biology to materials
    • Fan T.-X., et al. Biomorphic mineralization: from biology to materials. Prog. Mater. Sci. 2009, 54:542-659.
    • (2009) Prog. Mater. Sci. , vol.54 , pp. 542-659
    • Fan, T.-X.1
  • 46
    • 77950233779 scopus 로고    scopus 로고
    • Biomimetics and biotemplating of natural materials
    • Paris O., et al. Biomimetics and biotemplating of natural materials. MRS Bull. 2010, 35:219-225.
    • (2010) MRS Bull. , vol.35 , pp. 219-225
    • Paris, O.1
  • 47
    • 77951684057 scopus 로고    scopus 로고
    • 2 thin films induced by hydrophobins
    • 2 thin films induced by hydrophobins. Langmuir 2010, 26:6494-6502.
    • (2010) Langmuir , vol.26 , pp. 6494-6502
    • Santhiya, D.1
  • 48
    • 79952985495 scopus 로고    scopus 로고
    • Biomimetic growth of hydroxyapatite on super water-soluble carbon nanotube-protein hybrid nanofibers
    • Wei G., et al. Biomimetic growth of hydroxyapatite on super water-soluble carbon nanotube-protein hybrid nanofibers. Carbon 2011, 49:2216-2226.
    • (2011) Carbon , vol.49 , pp. 2216-2226
    • Wei, G.1
  • 49
    • 80054795953 scopus 로고    scopus 로고
    • Biosilica electrically-insulating layers by soft lithography-assisted biomineralisation with recombinant silicatein
    • Polini A., et al. Biosilica electrically-insulating layers by soft lithography-assisted biomineralisation with recombinant silicatein. Adv. Mater. 2011, 23:4674-4678.
    • (2011) Adv. Mater. , vol.23 , pp. 4674-4678
    • Polini, A.1
  • 50
    • 79959439525 scopus 로고    scopus 로고
    • Protein-mineral hybrid capsules from emulsions stabilized with an amphiphilic protein
    • Schulz A., et al. Protein-mineral hybrid capsules from emulsions stabilized with an amphiphilic protein. J. Mater. Chem. 2011, 21:9731-9736.
    • (2011) J. Mater. Chem. , vol.21 , pp. 9731-9736
    • Schulz, A.1
  • 51
    • 34247218486 scopus 로고    scopus 로고
    • Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3
    • Lin Q., et al. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:3782-3786.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 3782-3786
    • Lin, Q.1
  • 52
    • 79960143534 scopus 로고    scopus 로고
    • Mussel-inspired adhesives and coatings
    • Lee B.P., et al. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41:99-132.
    • (2011) Annu. Rev. Mater. Res. , vol.41 , pp. 99-132
    • Lee, B.P.1
  • 53
    • 77951684919 scopus 로고    scopus 로고
    • Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofibrils are a major component
    • Barlow D.E., et al. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofibrils are a major component. Langmuir 2010, 26:6549-6556.
    • (2010) Langmuir , vol.26 , pp. 6549-6556
    • Barlow, D.E.1
  • 54
    • 76649134410 scopus 로고    scopus 로고
    • Molecular design of barnacle cement in comparison with those of mussel and tubeworm
    • Kamino K. Molecular design of barnacle cement in comparison with those of mussel and tubeworm. J. Adhes. 2010, 86:96-110.
    • (2010) J. Adhes. , vol.86 , pp. 96-110
    • Kamino, K.1
  • 55
    • 40449140938 scopus 로고    scopus 로고
    • Underwater adhesive of marine organisms as the vital link between biological science and material science
    • Kamino K. Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar. Biotechnol. 2008, 10:111-121.
    • (2008) Mar. Biotechnol. , vol.10 , pp. 111-121
    • Kamino, K.1
  • 56
    • 72949106934 scopus 로고    scopus 로고
    • Protein scaffold engineering towards tunable surface attachment
    • Heyman A., et al. Protein scaffold engineering towards tunable surface attachment. Angew. Chem. Int. Ed. 2009, 48:9290-9294.
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 9290-9294
    • Heyman, A.1
  • 57
    • 0032974141 scopus 로고    scopus 로고
    • Design of a pH-dependent cellulose-binding domain
    • Linder M., et al. Design of a pH-dependent cellulose-binding domain. FEBS Lett. 1999, 447:13-16.
    • (1999) FEBS Lett. , vol.447 , pp. 13-16
    • Linder, M.1
  • 58
    • 67549138051 scopus 로고    scopus 로고
    • Design of metal-binding sites onto self-assembled peptide fibrils
    • Kasotakis E., et al. Design of metal-binding sites onto self-assembled peptide fibrils. Pept. Sci. 2009, 92:164-172.
    • (2009) Pept. Sci. , vol.92 , pp. 164-172
    • Kasotakis, E.1
  • 59
    • 78449275182 scopus 로고    scopus 로고
    • Chemical functionalization of graphene enabled by phage displayed peptides
    • Cui Y., et al. Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett. 2010, 10:4559-4565.
    • (2010) Nano Lett. , vol.10 , pp. 4559-4565
    • Cui, Y.1
  • 60
    • 64149118082 scopus 로고    scopus 로고
    • Quantitative affinity of genetically engineered repeating polypeptides to inorganic surfaces
    • Seker U.O.S., et al. Quantitative affinity of genetically engineered repeating polypeptides to inorganic surfaces. Biomacromolecules 2009, 10:250-257.
    • (2009) Biomacromolecules , vol.10 , pp. 250-257
    • Seker, U.O.S.1
  • 61
    • 33847136301 scopus 로고    scopus 로고
    • Genetically engineered polypeptides for inorganics: a utility in biological materials science and engineering
    • Tamerler C., et al. Genetically engineered polypeptides for inorganics: a utility in biological materials science and engineering. Mater. Sci. Eng. C 2007, 27:558-564.
    • (2007) Mater. Sci. Eng. C , vol.27 , pp. 558-564
    • Tamerler, C.1
  • 62
    • 0344052669 scopus 로고    scopus 로고
    • Molecular mechanistic origin of the toughness of natural adhesives, fibers and composites
    • Smith B.L., et al. Molecular mechanistic origin of the toughness of natural adhesives, fibers and composites. Nature 1999, 399:761-763.
    • (1999) Nature , vol.399 , pp. 761-763
    • Smith, B.L.1
  • 63
    • 77952079235 scopus 로고    scopus 로고
    • Designed biomaterials to mimic the mechanical properties of muscles
    • Lv S., et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature 2010, 465:69-73.
    • (2010) Nature , vol.465 , pp. 69-73
    • Lv, S.1
  • 64
    • 27144527038 scopus 로고    scopus 로고
    • Synthesis and properties of crosslinked recombinant pro-resilin
    • Elvin C.M., et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 2005, 437:999-1002.
    • (2005) Nature , vol.437 , pp. 999-1002
    • Elvin, C.M.1
  • 65
    • 33846666463 scopus 로고    scopus 로고
    • Polyprotein of GB1 is an ideal artificial elastomeric protein
    • Cao Y., Li H. Polyprotein of GB1 is an ideal artificial elastomeric protein. Nat. Mater. 2007, 6:109-114.
    • (2007) Nat. Mater. , vol.6 , pp. 109-114
    • Cao, Y.1    Li, H.2
  • 66
    • 77950567158 scopus 로고    scopus 로고
    • Recombinantly produced hydrophobins from fungal analogues as highly surface-active performance proteins
    • Wohlleben W., et al. Recombinantly produced hydrophobins from fungal analogues as highly surface-active performance proteins. Eur. Biophys. J. 2010, 39:457-468.
    • (2010) Eur. Biophys. J. , vol.39 , pp. 457-468
    • Wohlleben, W.1
  • 68
    • 0034617147 scopus 로고    scopus 로고
    • Mucins and molluscan calcification
    • Marin F., et al. Mucins and molluscan calcification. J. Biol. Chem. 2000, 275:20667-20675.
    • (2000) J. Biol. Chem. , vol.275 , pp. 20667-20675
    • Marin, F.1
  • 69
    • 0000735867 scopus 로고
    • The mechanical design of nacre
    • Jackson A.P., et al. The mechanical design of nacre. Proc. R. Soc. Lond. Ser. B 1988, 234:415-440.
    • (1988) Proc. R. Soc. Lond. Ser. B , vol.234 , pp. 415-440
    • Jackson, A.P.1
  • 70
    • 79957814350 scopus 로고    scopus 로고
    • Mechanical adaptation of biological materials - the examples of bone and wood
    • Weinkamer R., Fratzl P. Mechanical adaptation of biological materials - the examples of bone and wood. Mater. Sci. Eng. C 2011, 31:1164-1173.
    • (2011) Mater. Sci. Eng. C , vol.31 , pp. 1164-1173
    • Weinkamer, R.1    Fratzl, P.2
  • 71
    • 0034775004 scopus 로고    scopus 로고
    • Hydrophobins: multipurpose proteins
    • Wösten H.A. Hydrophobins: multipurpose proteins. Annu. Rev. Microbiol. 2001, 55:625-646.
    • (2001) Annu. Rev. Microbiol. , vol.55 , pp. 625-646
    • Wösten, H.A.1
  • 72
    • 76649087970 scopus 로고    scopus 로고
    • Carbohydrate-binding domains: multiplicity of biological roles
    • Guillen D., et al. Carbohydrate-binding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 2010, 85:1241-1249.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1241-1249
    • Guillen, D.1
  • 73
    • 33746744329 scopus 로고    scopus 로고
    • Protein self-assembly creates a nanoscale device for biomineralization
    • Snead M.L., et al. Protein self-assembly creates a nanoscale device for biomineralization. Mater. Sci. Eng. C 2006, 26:1296-1300.
    • (2006) Mater. Sci. Eng. C , vol.26 , pp. 1296-1300
    • Snead, M.L.1
  • 74
    • 79956332670 scopus 로고    scopus 로고
    • Anchored clathrate waters bind antifreeze proteins to ice
    • Garnham C.P., et al. Anchored clathrate waters bind antifreeze proteins to ice. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7363-7367.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7363-7367
    • Garnham, C.P.1
  • 75
    • 0037569589 scopus 로고    scopus 로고
    • Molecular basis for the extensibility of elastin
    • Li B., Daggett V. Molecular basis for the extensibility of elastin. J. Muscle Res. Cell Motil. 2002, 23:561-573.
    • (2002) J. Muscle Res. Cell Motil. , vol.23 , pp. 561-573
    • Li, B.1    Daggett, V.2
  • 76
    • 21644457965 scopus 로고    scopus 로고
    • Synthesis of and structural studies on repeating sequences of abductin
    • Bochicchio B., et al. Synthesis of and structural studies on repeating sequences of abductin. Macromol. Biosci. 2005, 5:502-511.
    • (2005) Macromol. Biosci. , vol.5 , pp. 502-511
    • Bochicchio, B.1
  • 77
    • 77955111796 scopus 로고    scopus 로고
    • New opportunities for an ancient material
    • Omenetto F.G., Kaplan D.L. New opportunities for an ancient material. Science 2010, 329:528-531.
    • (2010) Science , vol.329 , pp. 528-531
    • Omenetto, F.G.1    Kaplan, D.L.2
  • 78
    • 77955310355 scopus 로고    scopus 로고
    • Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils
    • Nova A., et al. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 2010, 10:2626-2634.
    • (2010) Nano Lett. , vol.10 , pp. 2626-2634
    • Nova, A.1
  • 79
    • 0037194788 scopus 로고    scopus 로고
    • Reverse engineering of the giant muscle protein titin
    • Li H., et al. Reverse engineering of the giant muscle protein titin. Nature 2002, 418:998-1002.
    • (2002) Nature , vol.418 , pp. 998-1002
    • Li, H.1
  • 80
    • 77950838795 scopus 로고    scopus 로고
    • Iron-clad fibers: a metal-based biological strategy for hard flexible coatings
    • Harrington M.J., et al. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 2010, 328:216-220.
    • (2010) Science , vol.328 , pp. 216-220
    • Harrington, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.