메뉴 건너뛰기




Volumn 50, Issue 1, 2012, Pages 147-170

Optimal control models of goal-oriented human locomotion

Author keywords

Human locomotion; Inverse optimal control; Pontryagin maximum principle; Stable manifold theorem

Indexed keywords

ASYMPTOTIC BEHAVIORS; GOAL-ORIENTED; HUMAN LOCOMOTIONS; INVERSE OPTIMAL CONTROL; OPTIMAL CONTROL MODEL; OPTIMAL CONTROL PROBLEM; OPTIMAL SYNTHESIS; OPTIMAL TRAJECTORIES; STABLE MANIFOLD THEOREM; TARGET POINT;

EID: 84858633134     PISSN: 03630129     EISSN: None     Source Type: Journal    
DOI: 10.1137/100799344     Document Type: Article
Times cited : (21)

References (16)
  • 4
    • 3943106785 scopus 로고    scopus 로고
    • A simple 'finite approximations' proof of the Pontryagin maximum principle under reduced differentiability hypotheses
    • A. V. Arutyunov and R. B. Vinter, A simple "finite approximations" proof of the Pontryagin maximum principle under reduced differentiability hypotheses, Set-Valued Anal., 12 (2004), pp. 5-24. (Pubitemid 39051050)
    • (2004) Set-Valued Analysis , vol.12 , Issue.1-2 , pp. 5-24
    • Arutyunov, A.V.1    Vinter, R.B.2
  • 6
    • 55449085223 scopus 로고    scopus 로고
    • The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements
    • B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis, and J.-P. Gauthier, The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements, PLoS Comput. Biol., 4 (2008), e1000194.
    • (2008) PLoS Comput. Biol. , vol.4
    • Berret, B.1    Darlot, C.2    Jean, F.3    Pozzo, T.4    Papaxanthis, C.5    Gauthier, J.-P.6
  • 7
    • 0003004622 scopus 로고
    • Linear matrix inequalities in system and control theory
    • SIAM, Philadelphia
    • S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Stud. Appl. Math. 15, SIAM, Philadelphia, 1994.
    • (1994) Stud. Appl. Math. , vol.15
    • Boyd, S.1    Ghaoui, L.E.2    Feron, E.3    Balakrishnan, V.4
  • 10
    • 84998095483 scopus 로고
    • When is a linear control system optimal?
    • R. Kalman, When is a linear control system optimal?, Trans. ASME, J. Basic Engrg., 86 (1964), pp. 51-60.
    • (1964) Trans. ASME, J. Basic Engrg. , vol.86 , pp. 51-60
    • Kalman, R.1
  • 11
    • 0003195540 scopus 로고
    • Introduction to the modern theory of dynamical systems
    • Cambridge University Press, Cambridge, UK
    • A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge University Press, Cambridge, UK, 1995.
    • (1995) Encyclopedia Math. Appl. , vol.54
    • Katok, A.1    Hasselblatt, B.2
  • 16
    • 34548096352 scopus 로고    scopus 로고
    • Contrôle optimal
    • Mathématiques Concr. Vuibert, Paris
    • E. Trélat, Contrôle optimal. Théorie and applications, Mathématiques Concr. Vuibert, Paris, 2005.
    • (2005) Théorie and applications
    • Trélat, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.