-
1
-
-
33748567127
-
There are significantly more nonnegative polynomials than sums of squares
-
Blekherman G. There are significantly more nonnegative polynomials than sums of squares. Israel J Math, 2006, 153: 355-380.
-
(2006)
Israel J Math
, vol.153
, pp. 355-380
-
-
Blekherman, G.1
-
2
-
-
33746906690
-
Global optimization of homogeneous polynomials on the simplex and on the sphere. Frontiers in Global Optimization
-
C. Floudas and P. Pardalos (Eds.), Boston: Kluwer Academic Publishers
-
Faybusovich L. Global optimization of homogeneous polynomials on the simplex and on the sphere. In: Floudas C, Pardalos P, eds. Frontiers in Global Optimization. Nonconvex Optim Appl, Vol 74. Boston: Kluwer Academic Publishers, 2004, 109-121.
-
(2004)
Nonconvex Optim Appl
, vol.74
, pp. 109-121
-
-
Faybusovich, L.1
-
3
-
-
0007025424
-
Über den Vergleich des arithmetischen und des geometrischen
-
Hurwitz A. Über den Vergleich des arithmetischen und des geometrischen. Mittels J Reine Angew Math, 1891, 108: 266-268.
-
(1891)
Mittels J Reine Angew Math
, vol.108
, pp. 266-268
-
-
Hurwitz, A.1
-
4
-
-
17444428545
-
Sparsity in sums of squares of polynomials
-
Kojima M, Kim S, Waki H. Sparsity in sums of squares of polynomials. Math Program, 2005, 103(1): 45-62.
-
(2005)
Math Program
, vol.103
, Issue.1
, pp. 45-62
-
-
Kojima, M.1
Kim, S.2
Waki, H.3
-
5
-
-
0035238864
-
Global optimization with polynomials and the problem of moments
-
Lasserre J. Global optimization with polynomials and the problem of moments. SIAM J Optim, 2001, 11(3): 796-817.
-
(2001)
SIAM J Optim
, vol.11
, Issue.3
, pp. 796-817
-
-
Lasserre, J.1
-
6
-
-
73249147288
-
Bi-quadratic optimization over unit spheres and semidefinite programming relaxations
-
Ling C, Nie J, Qi L, Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20(3): 1286-1310.
-
(2009)
SIAM J Optim
, vol.20
, Issue.3
, pp. 1286-1310
-
-
Ling, C.1
Nie, J.2
Qi, L.3
Ye, Y.4
-
8
-
-
70450210375
-
Sparse SOS relaxations for minimizing functions that are summations of small polynomials
-
Nie J, Demmel J. Sparse SOS relaxations for minimizing functions that are summations of small polynomials. SIAM J Optim, 2008, 19(4): 1534-1558.
-
(2008)
SIAM J Optim
, vol.19
, Issue.4
, pp. 1534-1558
-
-
Nie, J.1
Demmel, J.2
-
9
-
-
1542266056
-
Semidefinite Programming relaxations for semialgebraic problems
-
Parrilo P. Semidefinite Programming relaxations for semialgebraic problems. Math Program, Ser B, 2003, 96(2): 293-320.
-
(2003)
Math Program, Ser B
, vol.96
, Issue.2
, pp. 293-320
-
-
Parrilo, P.1
-
10
-
-
85128577150
-
-
In: Proceedings for the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003
-
Parrilo P. Exploiting structure in sum of squares programs. In: Proceedings for the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003. 2004, 4664-4669.
-
(2004)
Exploiting structure in sum of squares programs
, pp. 4664-4669
-
-
Parrilo, P.1
-
12
-
-
34249965956
-
Forms derived from the arithmetic-geometric inequality
-
Reznick B. Forms derived from the arithmetic-geometric inequality. Math Ann, 1989, 283: 431-464.
-
(1989)
Math Ann
, vol.283
, pp. 431-464
-
-
Reznick, B.1
-
13
-
-
0001157581
-
th problem
-
Providence: Amer Math Soc
-
th problem. In: Contem Math, Vol 253. Providence: Amer Math Soc, 2000, 251-272.
-
(2000)
Contem Math
, vol.253
, pp. 251-272
-
-
Reznick, B.1
-
14
-
-
0012847050
-
Handbook of Semidefinite Programming: Theory, Algorithms, and Applications
-
(Eds.), Boston: Kluwer Academic Publishers
-
Wolkowicz H, Saigal R, Vandenberghe L, eds. Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. International Series in Operations Research & Management Science, 27. Boston: Kluwer Academic Publishers, 2000.
-
(2000)
International Series in Operations Research & Management Science
, vol.27
-
-
Wolkowicz, H.1
Saigal, R.2
Vandenberghe, L.3
|