메뉴 건너뛰기




Volumn 14, Issue , 2012, Pages 45-55

Using recurrent artificial neural networks to forecast household electricity consumption

Author keywords

Air conditioning systems; Artificial neural networks; Carbon dioxide; Sensitivity analysis; Short term load forecasting

Indexed keywords

AIR CONDITIONING; CARBON DIOXIDE; ELECTRIC POWER UTILIZATION; FORECASTING; NEURAL NETWORKS; SENSITIVITY ANALYSIS;

EID: 84858373926     PISSN: 18766102     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.egypro.2011.12.1180     Document Type: Conference Paper
Times cited : (65)

References (31)
  • 2
    • 77950609865 scopus 로고    scopus 로고
    • European commission - directorate-general for energy and transport (DG TREN)
    • European Commission - Directorate-General for Energy and Transport (DG TREN). EU Energy in figures 2010.
    • (2010) EU Energy in Figures
  • 6
    • 48149114855 scopus 로고    scopus 로고
    • The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach
    • Bessec M, Fouquau J. The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach. Energy Economics 2008; 30:2705-2721.
    • (2008) Energy Economics , vol.30 , pp. 2705-2721
    • Bessec, M.1    Fouquau, J.2
  • 7
    • 79952192865 scopus 로고    scopus 로고
    • Air conditioning in the region of Madrid, Spain: An approach to electricity consumption, economics and CO2 emissions
    • Izquierdo M, Moreno-Rodríguez A, González-Gil A, García-Hernando N. Air conditioning in the region of Madrid, Spain: An approach to electricity consumption, economics and CO2 emissions. Energy 2011; 36:1630-1639.
    • (2011) Energy , vol.36 , pp. 1630-1639
    • Izquierdo, M.1    Moreno-Rodríguez, A.2    González-Gil, A.3    García-Hernando, N.4
  • 8
    • 0028288853 scopus 로고
    • Renewable energies and energy conservation technologies for buildings in southern Europe
    • Santamouris M, Argiriou A. Renewable energies and energy conservation technologies for buildings in southern Europe. Int. J. Solar Energy 1994; 15:69-79.
    • (1994) Int. J. Solar Energy , vol.15 , pp. 69-79
    • Santamouris, M.1    Argiriou, A.2
  • 12
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman JL. Finding structure in time. Cognitive science 1990; 14:179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 13
    • 77955228573 scopus 로고    scopus 로고
    • Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks
    • Xia C, Wang J, McMenemyc K. Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks. Electrical Power and Energy Systems 2010; 32:743-750.
    • (2010) Electrical Power and Energy Systems , vol.32 , pp. 743-750
    • Xia, C.1    Wang, J.2    McMenemyc, K.3
  • 14
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks
    • Tso GKF, Yau KKW. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007; 32:1761-1768.
    • (2007) Energy , vol.32 , pp. 1761-1768
    • Tso, G.K.F.1    Yau, K.K.W.2
  • 15
    • 79953211586 scopus 로고    scopus 로고
    • A new neural network approach to short term load forecasting of electrical power systems
    • Amjady, N.; Keynia F. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems. Energies 2011; 4:488-503.
    • (2011) Energies , vol.4 , pp. 488-503
    • Keynia, F.1    Amjady, N.2
  • 16
    • 77955466804 scopus 로고    scopus 로고
    • Electricity price forecasting using enhanced probability neural network
    • Lin WM, Gow HJ, Tsai MT. Electricity price forecasting using Enhanced Probability Neural Network. Energy Conversion and Management 2010; 51:2707-2714.
    • (2010) Energy Conversion and Management , vol.51 , pp. 2707-2714
    • Lin, W.M.1    Gow, H.J.2    Tsai, M.T.3
  • 17
    • 0037239496 scopus 로고    scopus 로고
    • Recurrent neural networks for time series classification
    • Hüsken M, Stagge P. Recurrent neural networks for time series classification. Neurocomputing 2003; 50:223-235.
    • (2003) Neurocomputing , vol.50 , pp. 223-235
    • Hüsken, M.1    Stagge, P.2
  • 19
    • 0004037722 scopus 로고
    • McGraw-Hill, Danish Technical Press. Copenhagen
    • Fanger PO. Thermal comfort. McGraw-Hill, Danish Technical Press. Copenhagen, 1970.
    • (1970) Thermal Comfort
    • Fanger, P.O.1
  • 20
    • 33747436558 scopus 로고    scopus 로고
    • Thermal comfort and the heat stress indices
    • Epstein Y, Moran DS. Thermal comfort and the heat stress indices. Industrial Health 2006; 44(3):388-98.
    • (2006) Industrial Health , vol.44 , Issue.3 , pp. 388-398
    • Epstein, Y.1    Moran, D.S.2
  • 21
    • 0001878870 scopus 로고
    • The discomfort index
    • Thom EC. The discomfort index. Weatherwise, 1959; 12:57-60.
    • (1959) Weatherwise , vol.12 , pp. 57-60
    • Thom, E.C.1
  • 22
    • 22144476038 scopus 로고
    • Humidex, a method of quantifying human discomfort due to excessive heat and humidity, CLI 1-79
    • Downsview, Ontario
    • Masterton JM, Richardson F.A. Humidex, a method of quantifying human discomfort due to excessive heat and humidity, CLI 1-79. Environment Canada, Atmospheric Environment Service, Downsview, Ontario, 1979.
    • (1979) Environment Canada, Atmospheric Environment Service
    • Masterton, J.M.1    Richardson, F.A.2
  • 23
    • 0003632802 scopus 로고
    • ASHRAE. ANSI/ASHRAE Standard 55-1992, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA
    • ASHRAE. ANSI/ASHRAE Standard 55-1992. Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, GA, 1992.
    • (1992) Thermal Environmental Conditions for Human Occupancy
  • 24
    • 0042378631 scopus 로고
    • The human bioclimate of hong kong
    • Brazdil, R. & M. Kolar, editors., 15-20 August, Brno, Czech Republic, Masaryk University
    • Kyle, WJ. The Human Bioclimate of Hong Kong. In: Brazdil, R. & M. Kolar, editors. Contemporary Climatology, Proc. of COC/IGU Meeting, 15-20 August, 1994, Brno, Czech Republic, Masaryk University, p. 345-350.
    • (1994) Contemporary Climatology, Proc. of COC/IGU Meeting , pp. 345-350
    • Kyle, W.J.1
  • 27
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco, CA, USA, 28th March - 1st April 1993 (ICNN 93) 1993
    • Riedmiller M., Braun H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28th March - 1st April 1993 (ICNN 93), 1993.
    • (1993) Proceedings of the IEEE International Conference on Neural Networks
    • Riedmiller, M.1    Braun, H.2
  • 28
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1989, 1:270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 29
    • 0348112118 scopus 로고
    • Distinctive features, categorical perception, and probability learning: Some applications of a neuron model
    • Anderson JA & Rosenfeld E, editors, Cambridge, MA: MIT Press
    • Anderson JA, Silverstein JW, Ritz SA. Jones R.S. Distinctive features, categorical perception, and probability learning: Some applications of a neuron model. In: Anderson JA & Rosenfeld E, editors. Neurocomputing: Foundations of Research, Cambridge, MA: MIT Press, 1988.
    • (1988) Neurocomputing: Foundations of Research
    • Anderson, J.A.1    Silverstein, J.W.2    Ritz, S.A.3    Jones, R.S.4
  • 30
    • 0001867238 scopus 로고
    • Interpreting neural network connection weights
    • Garson GD. Interpreting neural network connection weights. Artificial Intelligence Expert 1991; 6:47-51.
    • (1991) Artificial Intelligence Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 31
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • Goh ATC5
    • Goh ATC5. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering 1995; 9:143-151.
    • (1995) Artificial Intelligence in Engineering , vol.9 , pp. 143-151


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.