-
1
-
-
0038522813
-
A new beam finite element for the analysis of functionally graded materials
-
Chakraborty A., Gopalakrishnan S., Reddy J.N. A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 2003, 45:519-539.
-
(2003)
Int. J. Mech. Sci.
, vol.45
, pp. 519-539
-
-
Chakraborty, A.1
Gopalakrishnan, S.2
Reddy, J.N.3
-
3
-
-
55349145939
-
A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams
-
Li X.F. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams. J. Sound Vib. 2008, 318:1210-1229.
-
(2008)
J. Sound Vib.
, vol.318
, pp. 1210-1229
-
-
Li, X.F.1
-
4
-
-
67349206900
-
Mathematical solution for bending of short hybrid composite beams with variable fibers spacing
-
Benatta M.A., Tounsi A., Mechab I., Bouiadjra M.B. Mathematical solution for bending of short hybrid composite beams with variable fibers spacing. Appl. Math. Comput. 2009, 212:337-348.
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 337-348
-
-
Benatta, M.A.1
Tounsi, A.2
Mechab, I.3
Bouiadjra, M.B.4
-
5
-
-
72149107577
-
Vibration analysis of a functionally graded beam under a moving mass by using different beam theories
-
Simsek M. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos. Struct. 2010, 92:904-917.
-
(2010)
Compos. Struct.
, vol.92
, pp. 904-917
-
-
Simsek, M.1
-
6
-
-
77954048900
-
Large deflections of a non-linear cantilever functionally graded beam
-
Li X.F., Kang Y.A. Large deflections of a non-linear cantilever functionally graded beam. J. Reinf. Plast. Compos. 2010, 29:1761-1774.
-
(2010)
J. Reinf. Plast. Compos.
, vol.29
, pp. 1761-1774
-
-
Li, X.F.1
Kang, Y.A.2
-
7
-
-
33845211960
-
Free vibration analysis of functionally graded beams with simply supported edges
-
Aydogdu M., Taskin V. Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 2007, 28:1651-1656.
-
(2007)
Mater. Des.
, vol.28
, pp. 1651-1656
-
-
Aydogdu, M.1
Taskin, V.2
-
8
-
-
42649109703
-
Semi-inverse method for vibration and buckling of axially functionally graded beams
-
Aydogdu M. Semi-inverse method for vibration and buckling of axially functionally graded beams. J. Reinf. Plast. Compos. 2008, 27:683-691.
-
(2008)
J. Reinf. Plast. Compos.
, vol.27
, pp. 683-691
-
-
Aydogdu, M.1
-
9
-
-
0034323707
-
Closed-form solutions for natural frequencies for inhomogeneous beams with one sliding support and the other clamped
-
Elishakoff I., Becquet R. Closed-form solutions for natural frequencies for inhomogeneous beams with one sliding support and the other clamped. J. Sound Vib. 2000, 238:540-546.
-
(2000)
J. Sound Vib.
, vol.238
, pp. 540-546
-
-
Elishakoff, I.1
Becquet, R.2
-
10
-
-
0035400828
-
Class of analytical closed-form polynomial solutions for clamped-guided inhomogeneous beams
-
Bequet R., Elishakoff I. Class of analytical closed-form polynomial solutions for clamped-guided inhomogeneous beams. Chaos Solit. Fract. 2001, 12:1657-1678.
-
(2001)
Chaos Solit. Fract.
, vol.12
, pp. 1657-1678
-
-
Bequet, R.1
Elishakoff, I.2
-
11
-
-
0035970660
-
Apparently first closed-form solution for vibrating inhomogeneous beams
-
Elishakoff I., Candan S. Apparently first closed-form solution for vibrating inhomogeneous beams. Int. J. Solids Struct. 2001, 38:3411-3441.
-
(2001)
Int. J. Solids Struct.
, vol.38
, pp. 3411-3441
-
-
Elishakoff, I.1
Candan, S.2
-
12
-
-
0035218204
-
Inverse buckling problem for inhomogeneous columns
-
Elishakoff I. Inverse buckling problem for inhomogeneous columns. Int. J. Solids Struct. 2001, 38:457-464.
-
(2001)
Int. J. Solids Struct.
, vol.38
, pp. 457-464
-
-
Elishakoff, I.1
-
13
-
-
0034322044
-
Closed-form solutions for natural frequencies for inhomogeneous beams with one sliding support and the other pinned
-
Elishakoff I., Becquet R. Closed-form solutions for natural frequencies for inhomogeneous beams with one sliding support and the other pinned. J. Sound Vib. 2000, 238:529-539.
-
(2000)
J. Sound Vib.
, vol.238
, pp. 529-539
-
-
Elishakoff, I.1
Becquet, R.2
-
14
-
-
0035717209
-
Euler's problem revisited: 222 years later
-
Elishakoff I. Euler's problem revisited: 222 years later. Meccanica 2001, 36:265-272.
-
(2001)
Meccanica
, vol.36
, pp. 265-272
-
-
Elishakoff, I.1
-
15
-
-
67349108711
-
Buckling of functionally graded and elastically restrained non-uniform columns
-
Singh K.V., Li G. Buckling of functionally graded and elastically restrained non-uniform columns. Composites: Part B 2009, 40:393-403.
-
(2009)
Composites: Part B
, vol.40
, pp. 393-403
-
-
Singh, K.V.1
Li, G.2
-
16
-
-
75749124983
-
A new approach for free vibration of axially functionally graded beams with non-uniform cross-section
-
Huang Y., Li X.F. A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J. Sound Vib. 2010, 329:2291-2303.
-
(2010)
J. Sound Vib.
, vol.329
, pp. 2291-2303
-
-
Huang, Y.1
Li, X.F.2
-
17
-
-
79956122184
-
Free vibration and stability of axially functionally graded tapered Euler-Bernoulli Beams
-
Shahba A., Attarnejad R., Hajilar S. Free vibration and stability of axially functionally graded tapered Euler-Bernoulli Beams. Shock Vib. 2011, 18:683-696.
-
(2011)
Shock Vib.
, vol.18
, pp. 683-696
-
-
Shahba, A.1
Attarnejad, R.2
Hajilar, S.3
-
18
-
-
79954438456
-
Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions
-
Shahba A., Attarnejad R., Tavanaie Marvi M., Hajilar S. Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. Part B 2011, 42:801-808.
-
(2011)
Compos. Part B
, vol.42
, pp. 801-808
-
-
Shahba, A.1
Attarnejad, R.2
Tavanaie Marvi, M.3
Hajilar, S.4
-
19
-
-
77955656858
-
Free vibration characteristics of a functionally graded beam by finite element method
-
Alshorbagy A.E., Eltaher M.A., Mahmoud F.F. free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 2011, 35:412-425.
-
(2011)
Appl. Math. Model.
, vol.35
, pp. 412-425
-
-
Alshorbagy, A.E.1
Eltaher, M.A.2
Mahmoud, F.F.3
-
20
-
-
0022785452
-
Exact Bernoulli-Euler static stiffness matrix for a range of tapered beam-columns
-
Banerjee J.R., Williams F.W. exact Bernoulli-Euler static stiffness matrix for a range of tapered beam-columns. Int. J. Numer. Meth. Eng. 1986, 23:1615-1628.
-
(1986)
Int. J. Numer. Meth. Eng.
, vol.23
, pp. 1615-1628
-
-
Banerjee, J.R.1
Williams, F.W.2
-
21
-
-
38849144012
-
A general fourth order ordinary differential equation with solution in terms of Bessel functions: theory and engineering applications
-
Attarnejad R., Ghorbani-Tanha A.K. A general fourth order ordinary differential equation with solution in terms of Bessel functions: theory and engineering applications. Struct. Eng. Mech. 2007, 27:773-776.
-
(2007)
Struct. Eng. Mech.
, vol.27
, pp. 773-776
-
-
Attarnejad, R.1
Ghorbani-Tanha, A.K.2
-
22
-
-
0000049710
-
Vibration of non-uniform rods and beams
-
Abrate S. vibration of non-uniform rods and beams. J. Sound Vib. 1995, 185:703-716.
-
(1995)
J. Sound Vib.
, vol.185
, pp. 703-716
-
-
Abrate, S.1
-
24
-
-
0030737267
-
Exact Dynamic stiffness matrix for beams of arbitrarily varying cross sections
-
Mou Y., Han R.S.P., Shah A.H. Exact Dynamic stiffness matrix for beams of arbitrarily varying cross sections. Int. J. Numer. Meth. Eng. 1997, 40:233-250.
-
(1997)
Int. J. Numer. Meth. Eng.
, vol.40
, pp. 233-250
-
-
Mou, Y.1
Han, R.S.P.2
Shah, A.H.3
-
25
-
-
79952482703
-
Basic displacement functions in analysis of non-prismatic beams
-
Attarnejad R. Basic displacement functions in analysis of non-prismatic beams. Eng. Comput. 2010, 27:733-745.
-
(2010)
Eng. Comput.
, vol.27
, pp. 733-745
-
-
Attarnejad, R.1
-
26
-
-
79956099123
-
Basic displacement functions for centrifugally stiffened tapered beams
-
Attarnejad R., Shahba A. Basic displacement functions for centrifugally stiffened tapered beams. Int. J. Numer. meth. Biomed. Engineering 2011, 27:1385-1397.
-
(2011)
Int. J. Numer. meth. Biomed. Engineering
, vol.27
, pp. 1385-1397
-
-
Attarnejad, R.1
Shahba, A.2
-
27
-
-
80052214211
-
Basic displacement functions in analysis of centrifugally stiffened tapered beams
-
Attarnejad R., Shahba A. Basic displacement functions in analysis of centrifugally stiffened tapered beams. Arab. J. Sci. Eng. 2011, 36:841-853.
-
(2011)
Arab. J. Sci. Eng.
, vol.36
, pp. 841-853
-
-
Attarnejad, R.1
Shahba, A.2
-
28
-
-
0014763539
-
Matrix dynamic and instability analysis with nonuniform elements
-
Gallagher R.H., Lee C.H. Matrix dynamic and instability analysis with nonuniform elements. Int. J. Numer. Meth. Eng. 1970, 2:265-275.
-
(1970)
Int. J. Numer. Meth. Eng.
, vol.2
, pp. 265-275
-
-
Gallagher, R.H.1
Lee, C.H.2
-
29
-
-
77955467159
-
An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler-Bernoulli and Timoshenko beam elements
-
Shooshtari A., Khajavi R. An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler-Bernoulli and Timoshenko beam elements. Euro. J. Mech. A/Solids 2010, 29:826-836.
-
(2010)
Euro. J. Mech. A/Solids
, vol.29
, pp. 826-836
-
-
Shooshtari, A.1
Khajavi, R.2
-
30
-
-
0034207375
-
Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method
-
Banerjee J.R. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 2000, 233:857-875.
-
(2000)
J. Sound Vib.
, vol.233
, pp. 857-875
-
-
Banerjee, J.R.1
-
31
-
-
33748799435
-
Free vibration of rotating tapered beams using the dynamic stiffness method
-
Banerjee J.R., Su H., Jackson D.R. Free vibration of rotating tapered beams using the dynamic stiffness method. J. Sound Vib. 2006, 298:1034-1054.
-
(2006)
J. Sound Vib.
, vol.298
, pp. 1034-1054
-
-
Banerjee, J.R.1
Su, H.2
Jackson, D.R.3
-
32
-
-
79954991130
-
Application of differential transform method in free vibration analysis of rotating non-prismatic beams
-
Attarnejad R., Shahba A. Application of differential transform method in free vibration analysis of rotating non-prismatic beams. World Appl. Sci. J. 2008, 5:441-448.
-
(2008)
World Appl. Sci. J.
, vol.5
, pp. 441-448
-
-
Attarnejad, R.1
Shahba, A.2
-
33
-
-
0035837505
-
Vibration analysis of a tapered bar by differential transformation
-
Zeng H., Bert C.W. Vibration analysis of a tapered bar by differential transformation. J. Sound Vib. 2001, 242:737-739.
-
(2001)
J. Sound Vib.
, vol.242
, pp. 737-739
-
-
Zeng, H.1
Bert, C.W.2
-
34
-
-
33845617693
-
Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method
-
Ozdemir O., Kaya M.O. Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method. Meccanica 2006, 41:661-670.
-
(2006)
Meccanica
, vol.41
, pp. 661-670
-
-
Ozdemir, O.1
Kaya, M.O.2
-
35
-
-
43049113844
-
Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam
-
Mei C. Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam. Comput. Struct. 2008, 86:1280-1284.
-
(2008)
Comput. Struct.
, vol.86
, pp. 1280-1284
-
-
Mei, C.1
-
36
-
-
43949096943
-
Solution of free vibration equations of beam on elastic soil by using differential transform method
-
Catal S. Solution of free vibration equations of beam on elastic soil by using differential transform method. Appl. Math. Model. 2008, 32:1744-1757.
-
(2008)
Appl. Math. Model.
, vol.32
, pp. 1744-1757
-
-
Catal, S.1
-
37
-
-
33746836571
-
An application of differential transformation to stability analysis of heavy columns
-
Chai Y.H., Wang C.M. An application of differential transformation to stability analysis of heavy columns. Int. J. Struct. Stab. Dyn. 2006, 6:317-332.
-
(2006)
Int. J. Struct. Stab. Dyn.
, vol.6
, pp. 317-332
-
-
Chai, Y.H.1
Wang, C.M.2
-
38
-
-
0001581047
-
Differential quadrature and long term integration
-
Bellman R., Casti J. Differential quadrature and long term integration. J. Math. Anal. Appl. 1971, 34:235-238.
-
(1971)
J. Math. Anal. Appl.
, vol.34
, pp. 235-238
-
-
Bellman, R.1
Casti, J.2
-
39
-
-
0029724421
-
Differential quadrature method in computational mechanics
-
Bert C.W., Malik M. Differential quadrature method in computational mechanics. Appl. Mech. Rev. 1996, 49:1-28.
-
(1996)
Appl. Mech. Rev.
, vol.49
, pp. 1-28
-
-
Bert, C.W.1
Malik, M.2
-
40
-
-
0025749119
-
Differential quadrature method in the buckling analysis of beams and composite plates
-
Sherbourne A.N., Pandey M.D. Differential quadrature method in the buckling analysis of beams and composite plates. Comput. Struct. 1991, 40:903-913.
-
(1991)
Comput. Struct.
, vol.40
, pp. 903-913
-
-
Sherbourne, A.N.1
Pandey, M.D.2
-
41
-
-
84858332818
-
Application of differential quadrature (DQ) and harmonic differentia quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns
-
Civalek O. Application of differential quadrature (DQ) and harmonic differentia quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Struct. Eng. Mech 2007, 25:171-186.
-
(2007)
Struct. Eng. Mech
, vol.25
, pp. 171-186
-
-
Civalek, O.1
-
42
-
-
0348144661
-
Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates
-
Civalek O., Ulker M. Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates. Struct. Eng. Mech. 2004, 17:1-14.
-
(2004)
Struct. Eng. Mech.
, vol.17
, pp. 1-14
-
-
Civalek, O.1
Ulker, M.2
-
43
-
-
38149019457
-
Symbolic computation and differential quadrature method - A boon to engineering analysis
-
Rajasekaran S. Symbolic computation and differential quadrature method - A boon to engineering analysis. Struct. Eng. Mech. 2007, 27:713-739.
-
(2007)
Struct. Eng. Mech.
, vol.27
, pp. 713-739
-
-
Rajasekaran, S.1
-
44
-
-
38149099961
-
Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods
-
Rajasekaran S. Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods. Struct. Eng. Mech. 2008, 28:221-238.
-
(2008)
Struct. Eng. Mech.
, vol.28
, pp. 221-238
-
-
Rajasekaran, S.1
-
45
-
-
73349137300
-
Solution method for the classical beam theory using differential quadrature
-
Rajasekaran S., Gimena L., Gonzaga P., Gimena F.N. Solution method for the classical beam theory using differential quadrature. Struct. Eng. Mech. 2009, 33:675-696.
-
(2009)
Struct. Eng. Mech.
, vol.33
, pp. 675-696
-
-
Rajasekaran, S.1
Gimena, L.2
Gonzaga, P.3
Gimena, F.N.4
|