메뉴 건너뛰기




Volumn 96, Issue , 2012, Pages 146-152

Classification of gasoline brand and origin by Raman spectroscopy and a novel R-weighted LSSVM algorithm

Author keywords

Classification; Correlation coefficient; Gasoline; LSSVM; Raman spectroscopy

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION ALGORITHM; CLASSIFICATION RESULTS; CORRELATION COEFFICIENT; EUCLIDEAN DISTANCE; GASOLINE SAMPLES; LEAST SQUARES SUPPORT VECTOR MACHINES; LSSVM; NON-INVASIVE MEASUREMENT TECHNIQUE; PRINCIPAL COMPONENT ANALYSIS (PCA); PRINCIPAL COMPONENT SPACE; QUALITATIVE ANALYSIS; SPECTRAL RANGE;

EID: 84858285534     PISSN: 00162361     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fuel.2012.01.001     Document Type: Article
Times cited : (55)

References (34)
  • 1
    • 34347204415 scopus 로고    scopus 로고
    • Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction
    • DOI 10.1016/j.chemolab.2007.04.006, PII S0169743907000925
    • R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction Chemometr Intell Lab Syst 88 2007 183 188 (Pubitemid 47002037)
    • (2007) Chemometrics and Intelligent Laboratory Systems , vol.88 , Issue.2 , pp. 183-188
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 2
    • 4444291896 scopus 로고    scopus 로고
    • A least squares SVM algorithm for NIR gasoline octane number prediction
    • WCICA 2004; June 15-19, 2004
    • Dai L-K, Yao X-G. A least squares SVM algorithm for NIR gasoline octane number prediction. In: Intelligent control and automation, 2004. WCICA 2004; June 15-19, 2004. p. 3779-82.
    • (2004) Intelligent Control and Automation , pp. 3779-82
    • Dai, L.-K.1    Yao, X.-G.2
  • 3
    • 50249107931 scopus 로고    scopus 로고
    • Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra
    • R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra Chemometr Intell Lab Syst 93 2008 58 62
    • (2008) Chemometr Intell Lab Syst , vol.93 , pp. 58-62
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 4
    • 43849106493 scopus 로고    scopus 로고
    • Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data
    • R.M. Balabin, and R.Z. Safieva Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data Fuel 87 2008 2745 2752
    • (2008) Fuel , vol.87 , pp. 2745-2752
    • Balabin, R.M.1    Safieva, R.Z.2
  • 6
    • 79952487365 scopus 로고    scopus 로고
    • Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data
    • R.M. Balabin, and R.Z. Safieva Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data Anal Chim Acta 689 2011 190 197
    • (2011) Anal Chim Acta , vol.689 , pp. 190-197
    • Balabin, R.M.1    Safieva, R.Z.2
  • 7
    • 79953210805 scopus 로고    scopus 로고
    • Support vector machine regression (SVR/LS-SVM) - An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data
    • R.M. Balabin, and E.I. Lomakina Support vector machine regression (SVR/LS-SVM) - an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data Analyst 136 2011 1703 1712
    • (2011) Analyst , vol.136 , pp. 1703-1712
    • Balabin, R.M.1    Lomakina, E.I.2
  • 8
    • 78649872796 scopus 로고    scopus 로고
    • Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines
    • Z.-F. Xu, C.E. Bunker, and P.D.B. Harrington Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines Appl Spectrosc 64 2010 1251 1258
    • (2010) Appl Spectrosc , vol.64 , pp. 1251-1258
    • Xu, Z.-F.1    Bunker, C.E.2    Harrington, P.D.B.3
  • 9
    • 77955424093 scopus 로고    scopus 로고
    • Screening Brazilian commercial gasoline quality by hydrogen nuclear magnetic resonance spectroscopic fingerprintings and pattern-recognition multivariate chemometric analysis
    • D.L. Flumignan, N. Boralle, and J.E. de Oliveira Screening Brazilian commercial gasoline quality by hydrogen nuclear magnetic resonance spectroscopic fingerprintings and pattern-recognition multivariate chemometric analysis Talanta 82 2010 99 105
    • (2010) Talanta , vol.82 , pp. 99-105
    • Flumignan, D.L.1    Boralle, N.2    De Oliveira, J.E.3
  • 10
    • 37249055586 scopus 로고    scopus 로고
    • Use of principal component analysis (PCA) and linear discriminant analysis (LDA) in gas chromatographic (GC) data in the investigation of gasoline adulteration
    • DOI 10.1021/ef0701337
    • V.L. Skrobot, E.V.R. Castro, R.C.C. Pereira, V.M.D. Pasa, and C.P.F. Fortes Use of principal component analysis (PCA) and linear discriminant analysis (LDA) in gas chromatographic (GC) data in the investigation of gasoline adulteration Energy Fuels 21 2007 3394 3400 (Pubitemid 350267861)
    • (2007) Energy and Fuels , vol.21 , Issue.6 , pp. 3394-3400
    • Skrobot, V.L.1    Castro, E.V.R.2    Pereira, R.C.C.3    Pasa, V.M.D.4    Fortes, I.C.P.5
  • 11
    • 0037433376 scopus 로고    scopus 로고
    • Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks
    • DOI 10.1016/S0379-0738(03)00002-1
    • P. Doble, M. Sandercock, E. Du Pasquier, P. Petocz, C. Roux, and M. Dawson Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks Forensic Sci Int 132 2003 26 39 (Pubitemid 36411645)
    • (2003) Forensic Science International , vol.132 , Issue.1 , pp. 26-39
    • Doble, P.1    Sandercock, M.2    Du Pasquier, E.3    Petocz, P.4    Roux, C.5    Dawson, M.6
  • 12
    • 77955143333 scopus 로고    scopus 로고
    • Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels
    • W.N.S.M. Desa, N.N. Daéid, D. Ismail, and K. Savage Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels Anal Chem 82 2010 6395 6400
    • (2010) Anal Chem , vol.82 , pp. 6395-6400
    • Desa, W.N.S.M.1    Daéid, N.N.2    Ismail, D.3    Savage, K.4
  • 13
    • 33745590675 scopus 로고    scopus 로고
    • Determination of gasoline adulteration by principal components analysis-linear discriminant analysis applied to FTIR spectra
    • DOI 10.1021/ef050203e
    • R.C.C. Pereira, V.L. Skrobot, E.V.R. Castro, I.C.P. Fortes, and V.M.D. Pasa Determination of gasoline adulteration by principal components analysis-linear discriminant analysis applied to FTIR spectra Energy Fuels 2006 1097 1102 (Pubitemid 43984732)
    • (2006) Energy and Fuels , vol.20 , Issue.3 , pp. 1097-1102
    • Pereira, R.C.C.1    Skrobot, V.L.2    Castro, E.V.R.3    Fortes, I.C.P.4    Pasa, V.M.D.5
  • 14
    • 36248946789 scopus 로고    scopus 로고
    • Multivariate calibration in Fourier transform infrared spectrometry as a tool to detect adulterations in Brazilian gasoline
    • DOI 10.1016/j.fuel.2007.05.016, PII S0016236107002256
    • L.S.G. Teixeira, F.S. Oliveira, H.C. dos Santos, P.W.L. Cordeiro, and S.Q. Almeida Multivariate calibration in fourier transform infrared spectrometry as a tool to detect adulterations in Brazilian gasoline Fuel 87 2008 346 352 (Pubitemid 350137362)
    • (2008) Fuel , vol.87 , Issue.3 , pp. 346-352
    • Teixeira, L.S.G.1    Oliveira, F.S.2    Dos Santos, H.C.3    Cordeiro, P.W.L.4    Almeida, S.Q.5
  • 15
    • 0034661288 scopus 로고    scopus 로고
    • Real-time classification of petroleum products using near- infrared spectra
    • DOI 10.1016/S0098-1354(00)00522-6, PII S0098135400005226
    • M. Kim, Y.H. Lee, and C.G. Han Real-time classification of petroleum products using near-infrared spectra Comput Chem Eng 24 2000 513 517 (Pubitemid 30608276)
    • (2000) Computers and Chemical Engineering , vol.24 , Issue.2-7 , pp. 513-517
    • Kim, M.1    Lee, Y.-H.2    Han, C.3
  • 16
    • 40249109147 scopus 로고    scopus 로고
    • Gasoline classification by source and type based on near infrared (NIR) spectroscopy data
    • DOI 10.1016/j.fuel.2007.07.018, PII S0016236107003456
    • R.M. Balabin, and R.Z. Safieva Gasoline classification by source and type based on near infrared (NIR) spectroscopy data Fuel 87 2008 1096 1101 (Pubitemid 351625193)
    • (2008) Fuel , vol.87 , Issue.7 , pp. 1096-1101
    • Balabin, R.M.1    Safieva, R.Z.2
  • 17
    • 77953702262 scopus 로고    scopus 로고
    • Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques
    • R.M. Balabin, R.Z. Safieva, and E.I. Lomakina Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques Anal Chim Acta 671 2010 27 35
    • (2010) Anal Chim Acta , vol.671 , pp. 27-35
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 19
    • 0029403187 scopus 로고
    • Determination of octane numbers and reid vapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis
    • J.B. Cooper, K.L. Wise, J. Groves, and W.T. Welch Determination of octane numbers and reid vapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis Anal Chem 67 1995 4096 4100
    • (1995) Anal Chem , vol.67 , pp. 4096-4100
    • Cooper, J.B.1    Wise, K.L.2    Groves, J.3    Welch, W.T.4
  • 20
    • 0030180803 scopus 로고    scopus 로고
    • Determination of weight percent oxygen in commercial gasoline: A comparison between FT-Raman, FT-IR, and dispersive near-IR spectroscopies
    • J.B. Cooper, K.L. Wise, W.T. Welch, R.R. Bledsoe, and M.B. Sumner Determination of weight percent oxygen in commercial gasoline: a comparison between FT-Raman, FT-IR, and dispersive near-IR spectroscopies Appl Spectrosc 50 1996 917 921 (Pubitemid 126645701)
    • (1996) Applied Spectroscopy , vol.50 , Issue.7 , pp. 917-921
    • Cooper, J.B.1    Wise, K.L.2    Welch, W.T.3    Bledsoe, R.R.4    Sumner, M.B.5
  • 21
    • 0031268074 scopus 로고    scopus 로고
    • Comparison of near-IR, Raman, and mid-IR spectroscopies for the determination of BTEX in petroleum fuels
    • J.B. Cooper, K.L. Wise, W.T. Welch, M.B. Sumner, B.K. Wilt, and R.R. Bledsoe Comparison of near-IR, Raman, and Mid-IR spectroscopies for the determination of BTEX in petroleum fuels Appl Spectrosc 51 1997 1613 1620 (Pubitemid 127662631)
    • (1997) Applied Spectroscopy , vol.51 , Issue.11 , pp. 1613-1620
    • Cooper, J.B.1    Wise, K.L.2    Welch, W.T.3    Sumner, M.B.4    Wilt, B.K.5    Bledsoe, R.R.6
  • 22
    • 70349119530 scopus 로고    scopus 로고
    • Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis
    • K. Virkler, and I.K. Lednev Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis Anal Chem 81 2009 7773 7777
    • (2009) Anal Chem , vol.81 , pp. 7773-7777
    • Virkler, K.1    Lednev, I.K.2
  • 23
    • 60249094967 scopus 로고    scopus 로고
    • Improving Raman spectroscopic differentiation of the geographical origin of rice by simultaneous illumination over a wide sample area
    • Y. Kim, S. Lee, H. Chung, H. Choi, and K. Cha Improving Raman spectroscopic differentiation of the geographical origin of rice by simultaneous illumination over a wide sample area J Raman Spectrosc 40 2009 191 196
    • (2009) J Raman Spectrosc , vol.40 , pp. 191-196
    • Kim, Y.1    Lee, S.2    Chung, H.3    Choi, H.4    Cha, K.5
  • 25
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Process Lett 9 1999 293 300
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 26
    • 0344389017 scopus 로고    scopus 로고
    • Applicability of high-absorbance MIR spectroscopy in industrial quality control of reformed gasolines
    • DOI 10.1016/S0169-7439(98)00156-7, PII S0169743998001567
    • J.M. Andrade, M.S. Sánchez, and L.A. Sarabia Applicability of high-absorbance MIR spectroscopy in industrial quality control of reformed gasolines Chemometr Intell Lab 46 1999 41 55 (Pubitemid 29071098)
    • (1999) Chemometrics and Intelligent Laboratory Systems , vol.46 , Issue.1 , pp. 41-55
    • Andrade, J.M.1    Sanchez, M.S.2    Sarabia, L.A.3
  • 27
    • 39649084010 scopus 로고    scopus 로고
    • Soil parameter quantification by NIRS as a Chemometric challenge at 'Chimiométrie 2006'
    • DOI 10.1016/j.chemolab.2007.06.007, PII S0169743907001190
    • J.A.F. Pierna, and P. Dardenne Soil parameter quantification by NIRS as a chemometric challenge at 'Chimiométrie 2006' Chemometr Intell Lab 91 2008 94 98 (Pubitemid 351288950)
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.91 , Issue.1 , pp. 94-98
    • Fernandez Pierna, J.A.1    Dardenne, P.2
  • 29
    • 67650565605 scopus 로고    scopus 로고
    • Spectral quantitative analysis based on local least square support vector machine regression
    • X. Bao, and L.K. Dai Spectral quantitative analysis based on local least square support vector machine regression Chinese J Anal Chem 36 2008 75 78
    • (2008) Chinese J Anal Chem , vol.36 , pp. 75-78
    • Bao, X.1    Dai, L.K.2
  • 31
    • 84862820946 scopus 로고    scopus 로고
    • Michie D, Spiegelhalter DJ, Taylor CC. < >.
    • Michie D, Spiegelhalter DJ, Taylor CC. < http://www.amsta.leeds.ac.uk/ -charles/statlog/ >.
  • 33
    • 33847412692 scopus 로고    scopus 로고
    • Relative intensity correction of Raman spectrometers: NIST SRMs 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation
    • DOI 10.1366/000370207779947585
    • S.J. Choquette, E.S. Etz, W.S. Hurst, D.H. Blackburn, and S.D. Leigh Relative intensity correction of Raman spectrometers: NIST SRMs 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation Appl Spectrosc 61 2007 117 129 (Pubitemid 46347120)
    • (2007) Applied Spectroscopy , vol.61 , Issue.2 , pp. 117-129
    • Choquette, S.J.1    Etz, E.S.2    Hurst, W.S.3    Blackburn, D.H.4    Leigh, S.D.5
  • 34
    • 0242498775 scopus 로고    scopus 로고
    • Automated method for subtraction of fluorescence from biological Raman spectra
    • C.A. Lieber, and A. Mahadevan-Jansen Automated method for subtraction of fluorescence from biological Raman spectra Appl Spectrosc 57 2003 1363 1367
    • (2003) Appl Spectrosc , vol.57 , pp. 1363-1367
    • Lieber, C.A.1    Mahadevan-Jansen, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.