메뉴 건너뛰기




Volumn 36, Issue 3, 2012, Pages 485-501

Multivariate interpolation with increasingly flat radial basis functions of finite smoothness

Author keywords

Finite smoothness; Multivariate interpolation; Polyharmonic spline; Radial basis function

Indexed keywords


EID: 84858278940     PISSN: 10197168     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10444-011-9192-5     Document Type: Article
Times cited : (37)

References (20)
  • 2
    • 0036467951 scopus 로고    scopus 로고
    • Interpolation in the limit of increasingly flat radial basis functions
    • Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413-422 (2002).
    • (2002) Comput. Math. Appl. , vol.43 , pp. 413-422
    • Driscoll, T.1    Fornberg, B.2
  • 4
    • 80053982512 scopus 로고    scopus 로고
    • Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators
    • (to appear)
    • Fasshauer, G. E., Ye, Q.: Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numer. Math. (to appear).
    • Numer. Math
    • Fasshauer, G.E.1    Ye, Q.2
  • 5
    • 14644431037 scopus 로고    scopus 로고
    • Stable computation of multiquadric interpolants for all values of the shape parameter
    • Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853-867 (2004).
    • (2004) Comput. Math. Appl. , vol.48 , pp. 853-867
    • Fornberg, B.1    Wright, G.2
  • 6
    • 79957589881 scopus 로고    scopus 로고
    • Stable computations with Gaussian radial basis functions
    • Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869-892 (2011).
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.2 , pp. 869-892
    • Fornberg, B.1    Larsson, E.2    Flyer, N.3
  • 7
    • 0242667184 scopus 로고    scopus 로고
    • A numerical study of some radial basis function based solution methods for elliptic PDEs
    • Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891-902 (2003).
    • (2003) Comput. Math. Appl. , vol.46 , pp. 891-902
    • Larsson, E.1    Fornberg, B.2
  • 8
    • 17944381991 scopus 로고    scopus 로고
    • Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions
    • Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103-130 (2005).
    • (2005) Comput. Math. Appl. , vol.49 , pp. 103-130
    • Larsson, E.1    Fornberg, B.2
  • 9
    • 37249010964 scopus 로고    scopus 로고
    • Convergence of increasingly flat radia basis interpolants to polynomial interpolants
    • Lee, Y. J., Yoon, G. J., Yoon, J.: Convergence of increasingly flat radia basis interpolants to polynomial interpolants. SIAM J. Math. Anal 39, 537-553 (2007).
    • (2007) SIAM J. Math. Anal , vol.39 , pp. 537-553
    • Lee, Y.J.1    Yoon, G.J.2    Yoon, J.3
  • 10
    • 34250122797 scopus 로고
    • Interpolation of scattered data: distance matrices and conditionally positive definite functions
    • Micchelli, C. A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11-22 (1986).
    • (1986) Constr. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 11
    • 0001862613 scopus 로고
    • Comparison of radial basis function interpolants
    • K. Jetter and F. Utreras (Eds.), Singapore: World Scientific
    • Schaback, R.: Comparison of radial basis function interpolants. In: Jetter, K., Utreras, F. (eds.) Multivariate Approximation: From CAGD to Wavelets, pp. 293-305. World Scientific, Singapore (1993).
    • (1993) Multivariate Approximation: From CAGD to Wavelets , pp. 293-305
    • Schaback, R.1
  • 12
    • 65749310935 scopus 로고
    • Error estimates and condition numbers for radial basis function interpolation
    • Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251-264 (1995).
    • (1995) Adv. Comput. Math. , vol.3 , pp. 251-264
    • Schaback, R.1
  • 13
    • 21244456148 scopus 로고    scopus 로고
    • Multivariate interpolation by polynomials and radial basis functions
    • Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293-317 (2005).
    • (2005) Constr. Approx. , vol.21 , pp. 293-317
    • Schaback, R.1
  • 14
    • 37249027597 scopus 로고    scopus 로고
    • Limit problems for interpolation by analytic radial basis functions
    • Schaback, R.: Limit problems for interpolation by analytic radial basis functions. J. Comput. Appl. Math. 212(2), 127-149 (2008).
    • (2008) J. Comput. Appl. Math. , vol.212 , Issue.2 , pp. 127-149
    • Schaback, R.1
  • 15
    • 33646731541 scopus 로고    scopus 로고
    • Kernel techniques: from machine learning to meshless methods
    • Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15, 543-639 (2006).
    • (2006) Acta Numer. , vol.15 , pp. 543-639
    • Schaback, R.1    Wendland, H.2
  • 16
    • 70149104397 scopus 로고    scopus 로고
    • A trade-off principle in connection with the approximation by positive definite kernels
    • M. Neamtu and L. L. Schumaker (Eds.), Brentwood: Nashboro Press
    • Schmid, D.: A trade-off principle in connection with the approximation by positive definite kernels. In: Neamtu, M., Schumaker, L. L. (eds.) Approximation Theory XII: San Antonio 2007, pp. 348-359. Nashboro Press, Brentwood (2008).
    • (2008) Approximation Theory XII: San Antonio 2007 , pp. 348-359
    • Schmid, D.1
  • 18
    • 0346847275 scopus 로고
    • Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
    • MR 1366510 (96h:41025)
    • Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389-396 (1995). MR 1366510 (96h: 41025).
    • (1995) Adv. Comput. Math. , vol.4 , Issue.4 , pp. 389-396
    • Wendland, H.1
  • 20
    • 0000136089 scopus 로고
    • Compactly supported positive definite radial functions
    • MR 1357720 (97g:65031)
    • Wu, Z. M.: Compactly supported positive definite radial functions. Adv. Comput. Math. 4(3), 283-292 (1995). MR 1357720 (97g: 65031).
    • (1995) Adv. Comput. Math. , vol.4 , Issue.3 , pp. 283-292
    • Wu, Z.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.