-
1
-
-
33845894443
-
Semicontinuity of vector-valued mappings
-
Ait Mansour, A, Malivert, C and Thera, M. 2007. Semicontinuity of vector-valued mappings. Optimization, 56: 241-252.
-
(2007)
Optimization
, vol.56
, pp. 241-252
-
-
Mansour, A.A.1
Malivert, C.2
Thera, M.3
-
3
-
-
0002413308
-
Admissible points of convex sets
-
Arrow, KJ, Barankin, EW and Blackwell, D. 1953. Admissible points of convex sets. Contrib. Theory of Games, II, Ann. Math. Stud., 28: 87-91.
-
(1953)
Contrib. Theory of Games, II, Ann. Math. Stud.
, vol.28
, pp. 87-91
-
-
Arrow, K.J.1
Barankin, E.W.2
Blackwell, D.3
-
4
-
-
84858111646
-
-
Providence: American Mathematical Social Colloquium Publications
-
Birkhoff, G. 1976. Lattice Theory, 3rd, Vol. 25, Providence: American Mathematical Social Colloquium Publications.
-
(1976)
Lattice Theory,
, vol.25
-
-
Birkhoff, G.1
-
6
-
-
0002117178
-
General duality in vector optimization
-
Dolecki, S and Malivert, C. 1993. General duality in vector optimization. Optimization, 27: 97-119.
-
(1993)
Optimization
, vol.27
, pp. 97-119
-
-
Dolecki, S.1
Malivert, C.2
-
7
-
-
84858127468
-
A dual variant of Benson's outer approximation algorithm
-
submitted
-
Ehrgott, M, Löhne, A and Shao, L. A dual variant of Benson's outer approximation algorithm. J. Global Optim., submitted
-
J. Global Optim.
-
-
Ehrgott, M.1
Löhne, A.2
Shao, L.3
-
8
-
-
4444337917
-
A new ABB theorem in Banach spaces
-
Ferro, F. 1999. A new ABB theorem in Banach spaces. Optimization, 46: 353-362.
-
(1999)
Optimization
, vol.46
, pp. 353-362
-
-
Ferro, F.1
-
9
-
-
21344471617
-
On the density of proper efficient points
-
Fu, W. 1996. On the density of proper efficient points. Proc. Amer. Math. Soc., 124: 1213-1217.
-
(1996)
Proc. Amer. Math. Soc.
, vol.124
, pp. 1213-1217
-
-
Fu, W.1
-
10
-
-
79958841661
-
Lattice-valued semicontinuous functions, in Probability and Lattices, CWI Tract
-
Amsterdam
-
G. Gerritse, Lattice-valued semicontinuous functions, in Probability and Lattices, CWI Tract, Vol. 110, Math. Centrum, Centrum Wisk. Inform., Amsterdam, 1997, pp. 93-125.
-
(1997)
Math. Centrum, Centrum Wisk. Inform
, vol.110
, pp. 93-125
-
-
Gerritse, G.1
-
12
-
-
4444359686
-
A new ABB theorem in normed vector spaces
-
Göpfert, A, Tammer, C and Zǎlinescu, C. 2004. A new ABB theorem in normed vector spaces. Optimization, 53: 369-376.
-
(2004)
Optimization
, vol.53
, pp. 369-376
-
-
Göpfert, A.1
Tammer, C.2
Zǎlinescu, C.3
-
14
-
-
73549118156
-
A duality theory for set-valued functions I: Fenchel conjugation theory
-
Hamel, A. 2009. A duality theory for set-valued functions I: Fenchel conjugation theory. Set-Valued Var. Anal., 17: 153-182.
-
(2009)
Set-Valued Var. Anal.
, vol.17
, pp. 153-182
-
-
Hamel, A.1
-
15
-
-
7544229743
-
Closing the duality gap in linear vector optimization
-
Hamel, A, Heyde, F, Löhne, A, Tammer, C and Winkler, K. 2004. Closing the duality gap in linear vector optimization. J. Convex Anal., 11: 163-178.
-
(2004)
J. Convex Anal.
, vol.11
, pp. 163-178
-
-
Hamel, A.1
Heyde, F.2
Löhne, A.3
Tammer, C.4
Winkler, K.5
-
16
-
-
67649563554
-
Geometric duality in multiple objective linear programming
-
Heyde, F and Löhne, A. 2008. Geometric duality in multiple objective linear programming. SIAM J. Optim., 19: 836-845.
-
(2008)
SIAM J. Optim.
, vol.19
, pp. 836-845
-
-
Heyde, F.1
Löhne, A.2
-
17
-
-
58849104050
-
Set-valued duality theory for multiple objective linear programs and application to mathematical finance
-
Heyde, F, Löhne, A and Tammer, C. 2009. Set-valued duality theory for multiple objective linear programs and application to mathematical finance. Math. Meth. Oper. Res., 69: 159-179.
-
(2009)
Math. Meth. Oper. Res.
, vol.69
, pp. 159-179
-
-
Heyde, F.1
Löhne, A.2
Tammer, C.3
-
18
-
-
0024068874
-
A generalization of a theorem of Arrow, Barankin, and Blackwell
-
Jahn, J. 1988. A generalization of a theorem of Arrow, Barankin, and Blackwell. SIAM J. Control Optim., 26: 999-1005.
-
(1988)
SIAM J. Control Optim.
, vol.26
, pp. 999-1005
-
-
Jahn, J.1
-
20
-
-
16444367734
-
Lattice-valued mappings, completely distributive law and induced spaces
-
Liu, YM and Luo, MK. 1991. Lattice-valued mappings, completely distributive law and induced spaces. Fuzzy Sets Syst., 42: 43-56.
-
(1991)
Fuzzy Sets Syst.
, vol.42
, pp. 43-56
-
-
Liu, Y.M.1
Luo, M.K.2
-
22
-
-
33845884585
-
A new approach to duality in vector optimization
-
Löhne, A and Tammer, C. 2007. A new approach to duality in vector optimization. Optimization, 56: 221-239.
-
(2007)
Optimization
, vol.56
, pp. 221-239
-
-
Löhne, A.1
Tammer, C.2
-
25
-
-
0003731867
-
-
Dordrecht, Boston, London: Kluwer Academic Publishers
-
Pallaschke, D and Rolewicz, S. 1997. Foundations of Mathematical Optimization, Convex Analysis without Linearity, Dordrecht, Boston, London: Kluwer Academic Publishers.
-
(1997)
Foundations of Mathematical Optimization, Convex Analysis without Linearity
-
-
Pallaschke, D.1
Rolewicz, S.2
-
26
-
-
0009119348
-
Semi-continuous mappings in general theory
-
Penot, JP and Thera, M. 1982. Semi-continuous mappings in general theory. Arch. Math., 38: 158-166.
-
(1982)
Arch. Math.
, vol.38
, pp. 158-166
-
-
Penot, J.P.1
Thera, M.2
-
28
-
-
38249029505
-
On the supremum of a set in a multi-dimensional space
-
Tanino, T. 1988. On the supremum of a set in a multi-dimensional space. J. Math. Anal. Appl., 130: 386-397.
-
(1988)
J. Math. Anal. Appl.
, vol.130
, pp. 386-397
-
-
Tanino, T.1
-
29
-
-
38249013445
-
Conjugate duality in vector optimization
-
Tanino, T. 1992. Conjugate duality in vector optimization. J. Math. Anal. Appl., 167: 84-97.
-
(1992)
J. Math. Anal. Appl.
, vol.167
, pp. 84-97
-
-
Tanino, T.1
-
31
-
-
0016510786
-
A duality theorem for a convex programming problem in order complete vector lattices
-
Zowe, J. 1975. A duality theorem for a convex programming problem in order complete vector lattices. J. Math. Anal. Appl., 50: 273-287.
-
(1975)
J. Math. Anal. Appl.
, vol.50
, pp. 273-287
-
-
Zowe, J.1
|