메뉴 건너뛰기




Volumn 7, Issue 2, 2012, Pages 191-208

Actions and interactions of AMPK with insulin, the peroxisomal-proliferator activated receptors and sirtuins

Author keywords

AMPK; glucose and lipid metabolism; mammalian target of rapamycin complex; peroxisomal proliferator activated receptors; sirtuins; Type 2 diabetes

Indexed keywords

5 AMINO 4 IMIDAZOLECARBOXAMIDE RIBOSIDE; 6 PHOSPHOFRUCTOKINASE; ANABOLIC AGENT; CALCIUM CALMODULIN DEPENDENT PROTEIN KINASE; CD36 ANTIGEN; CYCLIC AMP PHOSPHODIESTERASE; FATTY ACID TRANSPORTER; GLUCOSE 6 PHOSPHATASE; GLUCOSE TRANSPORTER 1; GLUCOSE TRANSPORTER 4; GLYCEROPHOSPHATE; GLYCOGEN SYNTHASE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; INSULIN; INSULIN RECEPTOR SUBSTRATE; LIPOPROTEIN LIPASE; MAMMALIAN TARGET OF RAPAMYCIN; MESSENGER RNA; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; PROTEIN P53; PROTEIN P70; PYRUVATE DEHYDROGENASE; REACTIVE OXYGEN METABOLITE; S6 KINASE; SIRTUIN 1; STAT3 PROTEIN; TRANSCRIPTION FACTOR FKHR; TRANSCRIPTION FACTOR SOX9; UNINDEXED DRUG; VERY LOW DENSITY LIPOPROTEIN;

EID: 84858038445     PISSN: 17446651     EISSN: 17448417     Source Type: Journal    
DOI: 10.1586/eem.12.9     Document Type: Review
Times cited : (6)

References (203)
  • 1
    • 0033913213 scopus 로고    scopus 로고
    • Signaling pathways in insulin action: Molecular targets of insulin resistance
    • Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. 106(2), 165-169 (2000).
    • (2000) J. Clin. Invest. , vol.106 , Issue.2 , pp. 165-169
    • Pessin, J.E.1    Saltiel, A.R.2
  • 2
    • 0030020697 scopus 로고    scopus 로고
    • Role of insulin in hepatic fatty acid partitioning: Emerging concepts
    • Zammit VA. Role of insulin in hepatic fatty acid partitioning: emerging concepts. Biochem. J. 314, 1-14 (1996).
    • (1996) Biochem. J. , vol.314 , pp. 1-14
    • Zammit, V.A.1
  • 3
    • 36749104407 scopus 로고    scopus 로고
    • Exercise- and nutrient-controlled mechanisms involved in maintenance of the musculoskeletal mass
    • Rennie MJ. Exercise- and nutrient-controlled mechanisms involved in maintenance of the musculoskeletal mass. Biochem. Soc. Trans. 35, 1302-1305 (2007).
    • (2007) Biochem. Soc. Trans. , vol.35 , pp. 1302-1305
    • Rennie, M.J.1
  • 4
    • 0033927667 scopus 로고    scopus 로고
    • Cellular mechanisms of insulin resistance
    • Shulman GI. Cellular mechanisms of insulin resistance. J. Clin. Invest 106(2), 171-176 (2000).
    • (2000) J. Clin. Invest , vol.106 , Issue.2 , pp. 171-176
    • Shulman, G.I.1
  • 6
    • 53849147543 scopus 로고    scopus 로고
    • Role of nuclear receptors in the modulation of insulin secretion in lipid-induced insulin resistance
    • Sugden MC, Holness MJ. Role of nuclear receptors in the modulation of insulin secretion in lipid-induced insulin resistance. Biochem. Soc. Trans. 36, 891-900 (2008).
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 891-900
    • Sugden, M.C.1    Holness, M.J.2
  • 7
    • 77955890920 scopus 로고    scopus 로고
    • Leucine metabolism in regulation of insulin secretion from pancreatic beta cells
    • Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr. Rev. 68(5), 270-279 (2010).
    • (2010) Nutr. Rev. , vol.68 , Issue.5 , pp. 270-279
    • Yang, J.1    Chi, Y.2    Burkhardt, B.R.3    Guan, Y.4    Wolf, B.A.5
  • 9
    • 75149194039 scopus 로고    scopus 로고
    • PPAR control: It's SIRTainly as easy as PGC
    • Sugden MC, Caton PW, Holness MJ. PPAR control: it's SIRTainly as easy as PGC. J. Endocrinol. 204(2), 93-104 (2010).
    • (2010) J. Endocrinol. , vol.204 , Issue.2 , pp. 93-104
    • Sugden, M.C.1    Caton, P.W.2    Holness, M.J.3
  • 10
    • 79959338922 scopus 로고    scopus 로고
    • AMPK is a direct adenylate charge-regulated protein kinase
    • Oakhill JS, Steel R, Chen ZP et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 332(6036), 1433-1435 (2011).
    • (2011) Science , vol.332 , Issue.6036 , pp. 1433-1435
    • Oakhill, J.S.1    Steel, R.2    Chen, Z.P.3
  • 12
    • 80455160062 scopus 로고    scopus 로고
    • ADP regulates SNF1 the Saccharomyces cerevisiae homolog of AMP-activated protein kinase
    • Mayer FV, Heath R, Underwood E et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab. 14(5), 707-714 (2011).
    • (2011) Cell Metab. , vol.14 , Issue.5 , pp. 707-714
    • Mayer, F.V.1    Heath, R.2    Underwood, E.3
  • 13
    • 67650914230 scopus 로고    scopus 로고
    • AMPK in health and disease
    • Steinberg GR, Kemp BE. AMPK in health and disease. Physiol. Rev. 89(3), 1025-1078 (2009).
    • (2009) Physiol. Rev. , vol.89 , Issue.3 , pp. 1025-1078
    • Steinberg, G.R.1    Kemp, B.E.2
  • 14
    • 80053035284 scopus 로고    scopus 로고
    • AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
    • Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25(18), 1895-1908 (2011).
    • (2011) Genes Dev. , vol.25 , Issue.18 , pp. 1895-1908
    • Hardie, D.G.1
  • 15
    • 78650606464 scopus 로고    scopus 로고
    • Beta-subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK)
    • Oakhill JS, Chen ZP, Scott JW et al. Beta-subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl Acad. Sci. USA 107(45), 19237-19241 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , Issue.45 , pp. 19237-19241
    • Oakhill, J.S.1    Chen, Z.P.2    Scott, J.W.3
  • 16
    • 12144287284 scopus 로고    scopus 로고
    • LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily including MARK/PAR-1
    • Lizcano JM, Goransson O, Toth R et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23(4), 833-843 (2004).
    • (2004) EMBO J. , vol.23 , Issue.4 , pp. 833-843
    • Lizcano, J.M.1    Goransson, O.2    Toth, R.3
  • 18
    • 33847080728 scopus 로고    scopus 로고
    • AMP-activated protein kinase in metabolic control and insulin signaling
    • Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100(3), 328-341 (2007).
    • (2007) Circ. Res. , vol.100 , Issue.3 , pp. 328-341
    • Towler, M.C.1    Hardie, D.G.2
  • 19
    • 55549096745 scopus 로고    scopus 로고
    • SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1 Possible role in AMP-activated protein kinase activation
    • Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283(41), 27628-27635 (2008).
    • (2008) J. Biol. Chem. , vol.283 , Issue.41 , pp. 27628-27635
    • Lan, F.1    Cacicedo, J.M.2    Ruderman, N.3    Ido, Y.4
  • 20
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M, Cen Y, Zhao P et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14(5), 661-673 (2008).
    • (2008) Dev. Cell , vol.14 , Issue.5 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3
  • 21
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
    • Pillai VB, Sundaresan NR, Kim G et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 285(5), 3133-3144 (2010).
    • (2010) J. Biol. Chem. , vol.285 , Issue.5 , pp. 3133-3144
    • Pillai, V.B.1    Sundaresan, N.R.2    Kim, G.3
  • 22
    • 35348865444 scopus 로고    scopus 로고
    • Mechanism of inhibition of bovine f1-atpase by resveratrol and related polyphenols
    • Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl Acad. Sci. USA 104(34), 13632-13637 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , Issue.34 , pp. 13632-13637
    • Gledhill, J.R.1    Montgomery, M.G.2    Leslie, A.G.3    Walker, J.E.4
  • 23
    • 33745815985 scopus 로고    scopus 로고
    • AMP-activated protein kinase signaling in metabolic regulation
    • Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest 116(7), 1776-1783 (2006).
    • (2006) J. Clin. Invest , vol.116 , Issue.7 , pp. 1776-1783
    • Long, Y.C.1    Zierath, J.R.2
  • 24
    • 34147152841 scopus 로고    scopus 로고
    • Investigating the mechanism for amp activation of the amp-activated protein kinase cascade
    • Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403(1), 139-148 (2007).
    • (2007) Biochem. J. , vol.403 , Issue.1 , pp. 139-148
    • Sanders, M.J.1    Grondin, P.O.2    Hegarty, B.D.3    Snowden, M.A.4    Carling, D.5
  • 25
    • 77957763018 scopus 로고    scopus 로고
    • Ppm1E is an in cellulo AMP-activated protein kinase phosphatase
    • Voss M, Paterson J, Kelsall IR et al. Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cell Signal. 23(1), 114-124 (2011).
    • (2011) Cell Signal. , vol.23 , Issue.1 , pp. 114-124
    • Voss, M.1    Paterson, J.2    Kelsall, I.R.3
  • 26
    • 79952114408 scopus 로고    scopus 로고
    • The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase a key regulator of insulin secretion in MIN6 beta cells
    • Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M, Sanz P. The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 beta cells. FASEB J. 24(12), 5080-5091 (2010).
    • (2010) FASEB J. , vol.24 , Issue.12 , pp. 5080-5091
    • Garcia-Haro, L.1    Garcia-Gimeno, M.A.2    Neumann, D.3    Beullens, M.4    Bollen, M.5    Sanz, P.6
  • 27
    • 0030969532 scopus 로고    scopus 로고
    • Skeletal muscle triglyceride levels are inversely related to insulin action
    • Pan DA, Lillioja S, Kriketos AD et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46(6), 983-988 (1997).
    • (1997) Diabetes , vol.46 , Issue.6 , pp. 983-988
    • Pan, D.A.1    Lillioja, S.2    Kriketos, A.D.3
  • 28
    • 0032934826 scopus 로고    scopus 로고
    • Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study
    • Krssak M, Falk PK, Dresner A et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42(1), 113-116 (1999).
    • (1999) Diabetologia , vol.42 , Issue.1 , pp. 113-116
    • Krssak, M.1    Falk, P.K.2    Dresner, A.3
  • 29
    • 0037312801 scopus 로고    scopus 로고
    • Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes
    • Kautzky-Willer A, Krssak M, Winzer C et al. Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes. Diabetes 52(2), 244-251 (2003).
    • (2003) Diabetes , vol.52 , Issue.2 , pp. 244-251
    • Kautzky-Willer, A.1    Krssak, M.2    Winzer, C.3
  • 30
    • 79951726016 scopus 로고    scopus 로고
    • Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1
    • Frojdo S, Durand C, Molin L et al. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol. Cell Endocrinol. 335(2), 166-176 (2011).
    • (2011) Mol. Cell Endocrinol. , vol.335 , Issue.2 , pp. 166-176
    • Frojdo, S.1    Durand, C.2    Molin, L.3
  • 31
    • 80055115885 scopus 로고    scopus 로고
    • Insulin resistance due to nutrient excess: Is it a consequence of AMPK downregulation
    • Saha AK, Xu XJ, Balon TW, Brandon A, Kraegen EW, Ruderman NB. Insulin resistance due to nutrient excess: is it a consequence of AMPK downregulation? Cell Cycle 10(20), 3447-3451 (2011).
    • (2011) Cell Cycle , vol.10 , Issue.20 , pp. 3447-3451
    • Saha, A.K.1    Xu, X.J.2    Balon, T.W.3    Brandon, A.4    Kraegen, E.W.5    Ruderman, N.B.6
  • 32
    • 61449106744 scopus 로고    scopus 로고
    • AMPK and the biochemistry of exercise: Implications for human health and disease
    • Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem. J. 418(2), 261-275 (2009).
    • (2009) Biochem. J. , vol.418 , Issue.2 , pp. 261-275
    • Richter, E.A.1    Ruderman, N.B.2
  • 33
    • 50349099779 scopus 로고    scopus 로고
    • Emerging role for as160/tbc1d4 and tbc1d1 in the regulation of glut4 traffic
    • Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295(1), E29-E37 (2008).
    • (2008) Am. J. Physiol. Endocrinol. Metab. , vol.295 , Issue.1
    • Sakamoto, K.1    Holman, G.D.2
  • 35
    • 75549085755 scopus 로고    scopus 로고
    • Skeletal muscle insulin resistance is the primary defect in Type 2 diabetes
    • DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in Type 2 diabetes. Diabetes Care 32(Suppl. 2), S157-S163 (2009).
    • (2009) Diabetes Care , vol.32 SUPPL 2
    • Defronzo, R.A.1    Tripathy, D.2
  • 37
    • 38749110036 scopus 로고    scopus 로고
    • Complementary regulation of TBC1D1 and AS160 by growth factors insulin and ampk activators
    • Chen S, Murphy J, Toth R, Campbell DG, Morrice NA, Mackintosh C. Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem. J. 409(2), 449-459 (2008).
    • (2008) Biochem. J. , vol.409 , Issue.2 , pp. 449-459
    • Chen, S.1    Murphy, J.2    Toth, R.3    Campbell, D.G.4    Morrice, N.A.5    MacKintosh, C.6
  • 38
    • 79959614396 scopus 로고    scopus 로고
    • Exercise increases TBC1D1 phosphorylation in human skeletal muscle
    • Jessen N, An D, Lihn AS et al. Exercise increases TBC1D1 phosphorylation in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 301(1), E164-E171 (2011).
    • (2011) Am. J. Physiol. Endocrinol. Metab. , vol.301 , Issue.1
    • Jessen, N.1    An, D.2    Lihn, A.S.3
  • 39
    • 0036547822 scopus 로고    scopus 로고
    • Exercise- and insulin-stimulated muscle glucose transport: Distinct mechanisms of regulation
    • Khayat ZA, Patel N, Klip A. Exercise- and insulin-stimulated muscle glucose transport: distinct mechanisms of regulation. Can. J. Appl. Physiol. 27(2), 129-151 (2002).
    • (2002) Can. J. Appl. Physiol. , vol.27 , Issue.2 , pp. 129-151
    • Khayat, Z.A.1    Patel, N.2    Klip, A.3
  • 40
    • 79960711294 scopus 로고    scopus 로고
    • Rac1 signalling towards GLUT4/ glucose uptake in skeletal muscle
    • Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/ glucose uptake in skeletal muscle. Cell Signal. 23(10), 1546-1554 (2011).
    • (2011) Cell Signal. , vol.23 , Issue.10 , pp. 1546-1554
    • Chiu, T.T.1    Jensen, T.E.2    Sylow, L.3    Richter, E.A.4    Klip, A.5
  • 41
    • 80053319859 scopus 로고    scopus 로고
    • Current understanding of increased insulin sensitivity after exercise - Emerging candidates
    • Maarbjerg SJ, Sylow L, Richter EA. Current understanding of increased insulin sensitivity after exercise - emerging candidates. Acta Physiol. 202(3), 323-335 (2008).
    • (2008) Acta. Physiol. , vol.202 , Issue.3 , pp. 323-335
    • Maarbjerg, S.J.1    Sylow, L.2    Richter, E.A.3
  • 42
    • 0033949848 scopus 로고    scopus 로고
    • Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle
    • Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88(6), 2219-2226 (2000).
    • (2000) J. Appl. Physiol. , vol.88 , Issue.6 , pp. 2219-2226
    • Winder, W.W.1    Holmes, B.F.2    Rubink, D.S.3    Jensen, E.B.4    Chen, M.5    Holloszy, J.O.6
  • 43
    • 0345374578 scopus 로고    scopus 로고
    • Minireview: Malonyl CoA AMP-activated protein kinase and adiposity
    • Ruderman NB, Saha AK, Kraegen EW. Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology 144(12), 5166-5171 (2003).
    • (2003) Endocrinology , vol.144 , Issue.12 , pp. 5166-5171
    • Ruderman, N.B.1    Saha, A.K.2    Kraegen, E.W.3
  • 44
    • 12144271041 scopus 로고    scopus 로고
    • Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: Prevention of diabetes and ectopic lipid deposition
    • Yu X, McCorkle S, Wang M et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia 47(11), 2012-2021 (2004).
    • (2004) Diabetologia , vol.47 , Issue.11 , pp. 2012-2021
    • Yu, X.1    McCorkle, S.2    Wang, M.3
  • 45
    • 41549084644 scopus 로고    scopus 로고
    • AMP-activated protein kinase activation by 5-aminoimidazole-4- carboxamide-1-beta- D-ribofuranoside (AICAR) inhibits palmitate-induced endothelial cell apoptosis through reactive oxygen species suppression
    • Kim JE, Kim YW, Lee IK et al. AMP-activated protein kinase activation by 5-aminoimidazole-4-carboxamide-1-beta- D-ribofuranoside (AICAR) inhibits palmitate-induced endothelial cell apoptosis through reactive oxygen species suppression. J. Pharmacol. Sci. 106(3), 394-403 (2008).
    • (2008) J. Pharmacol. Sci. , vol.106 , Issue.3 , pp. 394-403
    • Kim, J.E.1    Kim, Y.W.2    Lee, I.K.3
  • 46
    • 0041854190 scopus 로고    scopus 로고
    • AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions
    • Putman CT, Kiricsi M, Pearcey J. AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J. Physiol. 551(1), 169-178 (2003).
    • (2003) J. Physiol. , vol.551 , Issue.1 , pp. 169-178
    • Putman, C.T.1    Kiricsi, M.2    Pearcey, J.3
  • 47
    • 79959449682 scopus 로고    scopus 로고
    • Central leptin activates mitochondrial function and increases heat production in skeletal muscle
    • Henry BA, Andrews ZB, Rao A, Clarke IJ. Central leptin activates mitochondrial function and increases heat production in skeletal muscle. Endocrinology 152(7), 2609-2618 (2011).
    • (2011) Endocrinology , vol.152 , Issue.7 , pp. 2609-2618
    • Henry, B.A.1    Andrews, Z.B.2    Rao, A.3    Clarke, I.J.4
  • 49
    • 0034805751 scopus 로고    scopus 로고
    • The effects of aicar on adipocyte differentiation of 3t3-l1 cells
    • Habinowski SA, Witters LA. The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun. 286(5), 852-856 (2001).
    • (2001) Biochem. Biophys. Res. Commun. , vol.286 , Issue.5 , pp. 852-856
    • Habinowski, S.A.1    Witters, L.A.2
  • 50
    • 29244434833 scopus 로고    scopus 로고
    • AMPK activation regulates apoptosis, adipogenesis and lipolysis by eIF2alpha in adipocytes
    • Dagon Y, Avraham Y, Berry EM. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem. Biophys. Res. Commun. 340(1), 43-47 (2006).
    • (2006) Biochem. Biophys. Res. Commun. , vol.340 , Issue.1 , pp. 43-47
    • Dagon, Y.1    Avraham, Y.2    Berry, E.M.3
  • 51
    • 47649116203 scopus 로고    scopus 로고
    • Effect of fasting on ppargamma and ampk activity in adipocytes
    • Kajita K, Mune T, Ikeda T et al. Effect of fasting on PPARgamma and AMPK activity in adipocytes. Diabetes Res. Clin. Pract. 81(2), 144-149 (2008).
    • (2008) Diabetes Res. Clin. Pract. , vol.81 , Issue.2 , pp. 144-149
    • Kajita, K.1    Mune, T.2    Ikeda, T.3
  • 52
    • 0037942739 scopus 로고    scopus 로고
    • Extended longevity in mice lacking the insulin receptor in adipose tissue
    • Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299(5606), 572-574 (2003).
    • (2003) Science , vol.299 , Issue.5606 , pp. 572-574
    • Bluher, M.1    Kahn, B.B.2    Kahn, C.R.3
  • 53
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
    • Picard F, Kurtev M, Chung N et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429(6993), 771-776 (2004).
    • (2004) Nature , vol.429 , Issue.6993 , pp. 771-776
    • Picard, F.1    Kurtev, M.2    Chung, N.3
  • 54
    • 78049281029 scopus 로고    scopus 로고
    • Adipose tissue endothelial cells from obese human subjects: Differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence
    • Villaret A, Galitzky J, Decaunes P et al. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 59(11), 2755-2763 (2010).
    • (2010) Diabetes , vol.59 , Issue.11 , pp. 2755-2763
    • Villaret, A.1    Galitzky, J.2    Decaunes, P.3
  • 55
    • 77951179501 scopus 로고    scopus 로고
    • SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity
    • Rutanen J, Yaluri N, Modi S et al. SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 59(4), 829-835 (2010).
    • (2010) Diabetes , vol.59 , Issue.4 , pp. 829-835
    • Rutanen, J.1    Yaluri, N.2    Modi, S.3
  • 56
    • 80055051189 scopus 로고    scopus 로고
    • Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice
    • Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes. Metab. 13(12), 1097-1104 (2011).
    • (2011) Diabetes Obes. Metab. , vol.13 , Issue.12 , pp. 1097-1104
    • Caton, P.W.1    Kieswich, J.2    Yaqoob, M.M.3    Holness, M.J.4    Sugden, M.C.5
  • 57
    • 80053156616 scopus 로고    scopus 로고
    • The Ca2+/ calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation
    • Lin F, Ribar TJ, Means AR. The Ca2+/ calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation. Endocrinology 152(10), 3668-3679 (2011).
    • (2011) Endocrinology , vol.152 , Issue.10 , pp. 3668-3679
    • Lin, F.1    Ribar, T.J.2    Means, A.R.3
  • 59
    • 0031179736 scopus 로고    scopus 로고
    • Lipoprotein lipase: Regulation and role in lipoprotein metabolism
    • Olivecrona T, Hultin M, Bergö M, Olivecrona G. Lipoprotein lipase: regulation and role in lipoprotein metabolism. Proc. Nutr. Soc. 56(2), 723-729 (1997).
    • (1997) Proc. Nutr. Soc. , vol.56 , Issue.2 , pp. 723-729
    • Olivecrona, T.1    Hultin, M.2    Bergöm3    Olivecrona, G.4
  • 60
    • 0029952169 scopus 로고    scopus 로고
    • Hyperinsulinemia, hyperproinsulinemia and insulin resistance in the metabolic syndrome
    • Schrezenmeir J. Hyperinsulinemia, hyperproinsulinemia and insulin resistance in the metabolic syndrome. Experientia 52(5), 426-432 (1996).
    • (1996) Experientia , vol.52 , Issue.5 , pp. 426-432
    • Schrezenmeir, J.1
  • 61
    • 0030835994 scopus 로고    scopus 로고
    • Relationship between insulin-mediated glucose disposal and regulation of plasma and adipose tissue lipoprotein lipase
    • Maheux P, Azhar S, Kern PA, Chen YD, Reuven GM. Relationship between insulin-mediated glucose disposal and regulation of plasma and adipose tissue lipoprotein lipase. Diabetologia 40(7), 850-858 (1997).
    • (1997) Diabetologia , vol.40 , Issue.7 , pp. 850-858
    • Maheux, P.1    Azhar, S.2    Kern, P.A.3    Chen, Y.D.4    Reuven, G.M.5
  • 62
    • 0031455728 scopus 로고    scopus 로고
    • Adipose tissue lipoprotein lipase and hormone-sensitive lipase contrasting findings in familial combined hyperlipidemia and insulin resistance syndrome
    • Reynisdottir S, Angelin B, Langin D et al. Adipose tissue lipoprotein lipase and hormone-sensitive lipase. Contrasting findings in familial combined hyperlipidemia and insulin resistance syndrome. Arterioscler. Thromb. Vasc. Biol. 17(10), 2287-2292 (1997).
    • (1997) Arterioscler. Thromb. Vasc. Biol. , vol.17 , Issue.10 , pp. 2287-2292
    • Reynisdottir, S.1    Angelin, B.2    Langin, D.3
  • 63
    • 0028180070 scopus 로고
    • Spiegelman BM. mPPAR gamma 2: Tissue-specific regulator of an adipocyte enhancer
    • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8(10), 1224-1234 (1994).
    • (1994) Genes Dev. , vol.8 , Issue.10 , pp. 1224-1234
    • Tontonoz, P.1    Hu, E.2    Graves, R.A.3    Budavari, A.I.4
  • 64
    • 33745183847 scopus 로고    scopus 로고
    • Functions of amp-activated protein kinase in adipose tissue
    • Pt 1
    • Daval M, Foufelle F, Ferre P. Functions of AMP-activated protein kinase in adipose tissue. J. Physiol. 574(Pt 1), 55-62 (2006).
    • (2006) J. Physiol. , vol.574 , pp. 55-62
    • Daval, M.1    Foufelle, F.2    Ferre, P.3
  • 65
    • 0037031840 scopus 로고    scopus 로고
    • Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3- phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise
    • Park H, Kaushik VK, Constant S et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J. Biol. Chem. 277(36), 32571-32577 (2002).
    • (2002) J. Biol. Chem. , vol.277 , Issue.36 , pp. 32571-32577
    • Park, H.1    Kaushik, V.K.2    Constant, S.3
  • 66
    • 77954821475 scopus 로고    scopus 로고
    • Disruption of AMPKalpha1 signaling prevents AICAR-induced inhibition of AS160/TBC1D4 phosphorylation and glucose uptake in primary rat adipocytes
    • Gaidhu MP, Perry RL, Noor F, Ceddia RB. Disruption of AMPKalpha1 signaling prevents AICAR-induced inhibition of AS160/TBC1D4 phosphorylation and glucose uptake in primary rat adipocytes. Mol. Endocrinol. 24(7), 1434-1440 (2010).
    • (2010) Mol. Endocrinol. , vol.24 , Issue.7 , pp. 1434-1440
    • Gaidhu, M.P.1    Perry, R.L.2    Noor, F.3    Ceddia, R.B.4
  • 67
    • 85011468695 scopus 로고    scopus 로고
    • Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: Possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase
    • Wijkander J, Landström TR, Manganiello V, Belfrage P, Degerman E. Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase. Endocrinology 139(1), 219-227 (1998).
    • (1998) Endocrinology , vol.139 , Issue.1 , pp. 219-227
    • Wijkander, J.1    Landström, T.R.2    Manganiello, V.3    Belfrage, P.4    Degerman, E.5
  • 68
    • 0032766006 scopus 로고    scopus 로고
    • Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt
    • Kitamura T, Kitamura Y, Kuroda S et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell Biol. 19(9), 6286-6296 (1999).
    • (1999) Mol. Cell Biol. , vol.19 , Issue.9 , pp. 6286-6296
    • Kitamura, T.1    Kitamura, Y.2    Kuroda, S.3
  • 69
    • 47749085114 scopus 로고    scopus 로고
    • AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: Potential mechanism and physiological relevance
    • Gauthier MS, Miyoshi H, Souza SC et al. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J. Biol. Chem. 283(24), 16514-16524 (2008).
    • (2008) J. Biol. Chem. , vol.283 , Issue.24 , pp. 16514-16524
    • Gauthier, M.S.1    Miyoshi, H.2    Souza, S.C.3
  • 70
    • 33845332346 scopus 로고    scopus 로고
    • Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle
    • Pt 3
    • Birk JB, Wojtaszewski JF. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J. Physiol. 577(Pt 3), 1021-1032 (2006).
    • (2006) J. Physiol. , vol.577 , pp. 1021-1032
    • Birk, J.B.1    Wojtaszewski, J.F.2
  • 71
    • 67651236115 scopus 로고    scopus 로고
    • Role of the AMP-activated protein kinase in regulating fatty acid metabolism during exercise
    • Steinberg GR. Role of the AMP-activated protein kinase in regulating fatty acid metabolism during exercise. Appl. Physiol. Nutr. Metab. 34(3), 315-322 (2009).
    • (2009) Appl. Physiol. Nutr. Metab. , vol.34 , Issue.3 , pp. 315-322
    • Steinberg, G.R.1
  • 72
    • 79958047295 scopus 로고    scopus 로고
    • Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype
    • Ahmadian M, Abbott MJ, Tang T. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13(6), 739-748 (2011).
    • (2011) Cell Metab. , vol.13 , Issue.6 , pp. 739-748
    • Ahmadian, M.1    Abbott, M.J.2    Tang, T.3
  • 73
    • 75049085233 scopus 로고    scopus 로고
    • PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis
    • Djouder N, Tuerk RD, Suter M et al. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 29(2), 469-481 (2010).
    • (2010) EMBO J. , vol.29 , Issue.2 , pp. 469-481
    • Djouder, N.1    Tuerk, R.D.2    Suter, M.3
  • 74
    • 60549083066 scopus 로고    scopus 로고
    • Regulation of AMP-activated protein kinase by cAMP in adipocytes: Roles for phosphodiesterases protein kinase B, protein kinase A, Epac and lipolysis
    • Omar B, Zmuda-Trzebiatowska E, Manganiello V, Göransson O, Degerman E. Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal. 21(5), 760-766 (2009).
    • (2009) Cell Signal. , vol.21 , Issue.5 , pp. 760-766
    • Omar, B.1    Zmuda-Trzebiatowska, E.2    Manganiello, V.3    Göransson, O.4    Degerman, E.5
  • 75
    • 78651067054 scopus 로고    scopus 로고
    • Fingar DC. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes
    • Soliman GA, Acosta-Jaquez HA, Fingar DC. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45(12), 1089-1100 (2010).
    • (2010) Lipids , vol.45 , Issue.12 , pp. 1089-1100
    • Soliman, G.A.1    Acosta-Jaquez, H.A.2
  • 76
    • 0025098765 scopus 로고
    • Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy
    • Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 322(4), 223-228 (1990).
    • (1990) N. Engl. J. Med. , vol.322 , Issue.4 , pp. 223-228
    • Shulman, G.I.1    Rothman, D.L.2    Jue, T.3    Stein, P.4    Defronzo, R.A.5    Shulman, R.G.6
  • 77
    • 0036079974 scopus 로고    scopus 로고
    • Glycogen and its metabolism
    • Roach PJ. Glycogen and its metabolism. Curr. Mol. Med. 2(2), 101-120 (2002).
    • (2002) Curr. Mol. Med. , vol.2 , Issue.2 , pp. 101-120
    • Roach, P.J.1
  • 78
    • 18444399216 scopus 로고    scopus 로고
    • Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis
    • McManus EJ, Sakamoto K, Armit LJ et al. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J. 24(8), 1571-1583 (2005).
    • (2005) EMBO J. , vol.24 , Issue.8 , pp. 1571-1583
    • McManus, E.J.1    Sakamoto, K.2    Armit, L.J.3
  • 79
    • 34547691071 scopus 로고    scopus 로고
    • The role of GSK3 in glucose homeostasis and the development of insulin resistance
    • Lee J, Kim MS. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res. Clin. Pract. 77(Suppl. 1) S49-S57 (2007).
    • (2007) Diabetes Res. Clin. Pract. , vol.77 SUPPL 1
    • Lee, J.1    Kim, M.S.2
  • 80
    • 84858025530 scopus 로고
    • Studies on UDPG-alpha-glucan transglucosylase III Interconversion of two forms of muscle UDPG-alpha-glucan transglucosylase by a phosphorylation- dephosphorylation reaction sequence
    • Friedman, Larner J. Studies on UDPG-alpha-glucan transglucosylase. III. Interconversion of two forms of muscle UDPG-alpha-glucan transglucosylase by a phosphorylation-dephosphorylation reaction sequence. Biochemistry 2669-2675 (1963).
    • (1963) Biochemistry , pp. 2669-2675
    • Friedman Larner, J.1
  • 81
    • 62349125533 scopus 로고    scopus 로고
    • Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance
    • Jensen J, Lai YC. Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch. Physiol. Biochem. 115(1), 13-21 (2009).
    • (2009) Arch. Physiol. Biochem. , vol.115 , Issue.1 , pp. 13-21
    • Jensen, J.1    Lai, Y.C.2
  • 82
    • 78049444162 scopus 로고    scopus 로고
    • Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle
    • Bouskila M, Hunter RW, Ibrahim AF et al. Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metab. 12(5), 456-466 (2010).
    • (2010) Cell Metab. , vol.12 , Issue.5 , pp. 456-466
    • Bouskila, M.1    Hunter, R.W.2    Ibrahim, A.F.3
  • 83
    • 79952395789 scopus 로고    scopus 로고
    • Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle
    • Hunter RW, Treebak JT, Wojtaszewski JF, Sakamoto K. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes 60(3), 766-774 (2011).
    • (2011) Diabetes , vol.60 , Issue.3 , pp. 766-774
    • Hunter, R.W.1    Treebak, J.T.2    Wojtaszewski, J.F.3    Sakamoto, K.4
  • 84
    • 34248151855 scopus 로고    scopus 로고
    • Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage
    • Luptak I, Shen M, He H et al. Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage. J. Clin. Invest. 117(5), 1432-1439 (2007).
    • (2007) J. Clin. Invest. , vol.117 , Issue.5 , pp. 1432-1439
    • Luptak, I.1    Shen, M.2    He, H.3
  • 85
    • 0034687210 scopus 로고    scopus 로고
    • Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia
    • Marsin AS, Bertrand L, Rider MH et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10(20), 1247-1255 (2000).
    • (2000) Curr. Biol. , vol.10 , Issue.20 , pp. 1247-1255
    • Marsin, A.S.1    Bertrand, L.2    Rider, M.H.3
  • 86
    • 71549149354 scopus 로고    scopus 로고
    • Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle
    • Zhang L, Keung W, Samokhvalov V, Wang W, Lopaschuk GD. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim. Biophys. Acta 1801(1), 1-22 (2010).
    • (2010) Biochim. Biophys. Acta , vol.1801 , Issue.1 , pp. 1-22
    • Zhang, L.1    Keung, W.2    Samokhvalov, V.3    Wang, W.4    Lopaschuk, G.D.5
  • 87
    • 78149279712 scopus 로고    scopus 로고
    • AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury
    • Russell RR 3rd, Li J, Coven DL et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 114(4), 495-503 (2004).
    • (2004) J. Clin. Invest. , vol.114 , Issue.4 , pp. 495-503
    • Russell III, R.R.1    Li, J.2    Coven, D.L.3
  • 88
    • 0141569397 scopus 로고    scopus 로고
    • Mutation analysis of AMP-activated protein kinase subunits in inherited cardiomyopathies: Implications for kinase function and disease pathogenesis
    • Oliveira SM, Ehtisham J, Redwood CS, Ostman-Smith I, Blair EM, Watkins H. Mutation analysis of AMP-activated protein kinase subunits in inherited cardiomyopathies: implications for kinase function and disease pathogenesis. J. Mol. Cell Cardiol. 35(10), 1251-1255 (2003).
    • (2003) J. Mol. Cell Cardiol. , vol.35 , Issue.10 , pp. 1251-1255
    • Oliveira, S.M.1    Ehtisham, J.2    Redwood, C.S.3    Ostman-Smith, I.4    Blair, E.M.5    Watkins, H.6
  • 89
    • 33947526130 scopus 로고    scopus 로고
    • AMP-activated protein kinase in the heart: Role during health and disease
    • Arad M, Seidman CE, Seidman JG. AMP-activated protein kinase in the heart: role during health and disease. Circ. Res. 100(4), 474-488 (2007).
    • (2007) Circ. Res. , vol.100 , Issue.4 , pp. 474-488
    • Arad, M.1    Seidman, C.E.2    Seidman, J.G.3
  • 90
    • 0033516477 scopus 로고    scopus 로고
    • A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism
    • Febbraio M, Abumrad NA, Hajjar DP et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem. 274(27), 19055-19062 (1999).
    • (1999) J. Biol. Chem. , vol.274 , Issue.27 , pp. 19055-19062
    • Febbraio, M.1    Abumrad, N.A.2    Hajjar, D.P.3
  • 91
    • 0034693232 scopus 로고    scopus 로고
    • Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice
    • Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275(42), 32523-32529 (2000).
    • (2000) J. Biol. Chem. , vol.275 , Issue.42 , pp. 32523-32529
    • Coburn, C.T.1    Keff, R.J.2    Febbraio, M.3    Beets, A.L.4    Silverstein, R.L.5    Abumrad, N.A.6
  • 92
    • 34247626856 scopus 로고    scopus 로고
    • CD36 deficiency rescues lipotoxic cardiomyopathy
    • Yang J, Sambandam N, Han X et al. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ. Res. 100(8), 1208-1217 (2007).
    • (2007) Circ. Res. , vol.100 , Issue.8 , pp. 1208-1217
    • Yang, J.1    Sambandam, N.2    Han, X.3
  • 93
    • 77951976294 scopus 로고    scopus 로고
    • Fatty acid transport across the cell membrane: Regulation by fatty acid transporters prostaglandins leukot
    • Schwenk RW, Holloway GP, Luiken JJ, Bonen A, Glatz JF. Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot. Essent. Fatty Acids 82(4-6), 149-154 (2010).
    • (2010) Essent. Fatty Acids , vol.82 , Issue.4-6 , pp. 149-154
    • Schwenk, R.W.1    Holloway, G.P.2    Luiken, J.J.3    Bonen, A.4    Glatz, J.F.5
  • 94
    • 13444268937 scopus 로고    scopus 로고
    • Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy
    • Chiu HC, Kovacs A, Blanton RM et al. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ. Res. 96(2), 225-233 (2005).
    • (2005) Circ. Res. , vol.96 , Issue.2 , pp. 225-233
    • Chiu, H.C.1    Kovacs, A.2    Blanton, R.M.3
  • 95
    • 0035061419 scopus 로고    scopus 로고
    • A novel mouse model of lipotoxic cardiomyopathy
    • Chiu HC, Kovacs A, Ford DA et al. A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Invest. 107(7), 813-822 (2001).
    • (2001) J. Clin. Invest. , vol.107 , Issue.7 , pp. 813-822
    • Chiu, H.C.1    Kovacs, A.2    Ford, D.A.3
  • 96
    • 0037677773 scopus 로고    scopus 로고
    • Contraction-induced fatty acid translocase/ CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling
    • Luiken JJ, Coort SL, Willems J et al. Contraction-induced fatty acid translocase/ CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52(7), 1627-1634 (2003).
    • (2003) Diabetes , vol.52 , Issue.7 , pp. 1627-1634
    • Luiken, J.J.1    Coort, S.L.2    Willems, J.3
  • 97
    • 33847029897 scopus 로고    scopus 로고
    • AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36
    • Habets DD, Coumans WA, Voshol PJ et al. AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem. Biophys. Res. Commun. 355(1), 204-210 (2007).
    • (2007) Biochem. Biophys. Res. Commun. , vol.355 , Issue.1 , pp. 204-210
    • Habets, D.D.1    Coumans, W.A.2    Voshol, P.J.3
  • 98
    • 33646862402 scopus 로고    scopus 로고
    • Cellular fatty acid uptake: The contribution of metabolism
    • Mashek DG, Coleman RA. Cellular fatty acid uptake: the contribution of metabolism. Curr. Opin. Lipidol. 17(3), 274-278 (2006).
    • (2006) Curr. Opin. Lipidol. , vol.17 , Issue.3 , pp. 274-278
    • Mashek, D.G.1    Coleman, R.A.2
  • 99
    • 3042739406 scopus 로고    scopus 로고
    • Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats
    • Coort SL, Hasselbaink DM, Koonen DP et al. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes 53(7), 1655-1663 (2004).
    • (2004) Diabetes , vol.53 , Issue.7 , pp. 1655-1663
    • Coort, S.L.1    Hasselbaink, D.M.2    Koonen, D.P.3
  • 100
    • 4544355465 scopus 로고    scopus 로고
    • Triacylglycerol accumulation in human obesity and Type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36
    • Bonen A, Parolin ML, Steinberg GR et al. Triacylglycerol accumulation in human obesity and Type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 18(10), 1144-1146 (2004).
    • (2004) FASEB J. , vol.18 , Issue.10 , pp. 1144-1146
    • Bonen, A.1    Parolin, M.L.2    Steinberg, G.R.3
  • 101
    • 2942547652 scopus 로고    scopus 로고
    • Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway
    • Pt 10
    • Guillet-Deniau I, Pichard AL, Kone A et al. Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element- binding-protein-1c-dependent pathway. J. Cell Sci. 117(Pt 10), 1937-1944 (2004).
    • (2004) J. Cell Sci. , vol.117 , pp. 1937-1944
    • Guillet-Deniau, I.1    Pichard, A.L.2    Kone, A.3
  • 102
    • 4544335528 scopus 로고    scopus 로고
    • Chronic hyperglycaemia promotes lipogenesis and triacylglycerol accumulation in human skeletal muscle cells
    • Aas V, Kase ET, Solberg R, Jensen J, Rustan AC. Chronic hyperglycaemia promotes lipogenesis and triacylglycerol accumulation in human skeletal muscle cells. Diabetologia 47(8), 1452-1461 (2004).
    • (2004) Diabetologia , vol.47 , Issue.8 , pp. 1452-1461
    • Aas, V.1    Kase, E.T.2    Solberg, R.3    Jensen, J.4    Rustan, A.C.5
  • 103
    • 0034682474 scopus 로고    scopus 로고
    • Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets
    • Kakuma T, Lee Y, Higa M et al. Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc. Natl Acad. Sci. USA 97(15), 8536-8541 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , Issue.15 , pp. 8536-8541
    • Kakuma, T.1    Lee, Y.2    Higa, M.3
  • 104
    • 0031907948 scopus 로고    scopus 로고
    • Differential regulation in the heart of mitochondrial carnitine palmitoyltransferase-I muscle and liver isoforms
    • Park EA, Cook GA. Differential regulation in the heart of mitochondrial carnitine palmitoyltransferase-I muscle and liver isoforms. Mol. Cell Biochem. 180(1-2), 27-32 (1998).
    • (1998) Mol. Cell Biochem. , vol.180 , Issue.1-2 , pp. 27-32
    • Park, E.A.1    Cook, G.A.2
  • 105
    • 0029991872 scopus 로고    scopus 로고
    • Glucose and insulin-induced inhibition of fatty acid oxidation: The glucose-fatty acid cycle reversed
    • 4 Pt 1
    • Sidossis LS, Wolfe RR. Glucose and insulin-induced inhibition of fatty acid oxidation: the glucose-fatty acid cycle reversed. Am. J. Physiol. 270(4 Pt 1), E733-E738 (1996).
    • (1996) Am. J. Physiol. , vol.270
    • Sidossis, L.S.1    Wolfe, R.R.2
  • 106
    • 0036896836 scopus 로고    scopus 로고
    • Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle
    • Rasmussen BB, Holmbäck UC, Volpi E, Morio-Liondore B, Paddon-Jones D, Wolfe RR. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. J. Clin. Invest. 110(11), 1687-1693 (2002).
    • (2002) J. Clin. Invest. , vol.110 , Issue.11 , pp. 1687-1693
    • Rasmussen, B.B.1    Holmbäck, U.C.2    Volpi, E.3    Morio-Liondore, B.4    Paddon-Jones, D.5    Wolfe, R.R.6
  • 107
    • 0036291429 scopus 로고    scopus 로고
    • Evaluation of free fatty acid metabolism in vivo
    • Oakes ND, Furler SM. Evaluation of free fatty acid metabolism in vivo. Ann. NY Acad. Sci. 967, 158-175 (2002).
    • (2002) Ann. NY Acad. Sci. , vol.967 , pp. 158-175
    • Oakes, N.D.1    Furler, S.M.2
  • 108
    • 0033038994 scopus 로고    scopus 로고
    • Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer
    • Oakes ND, Kjellstedt A, Forsberg GB et al. Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. J. Lipid Res. 40(6), 1155-1169 (1999).
    • (1999) J. Lipid Res. , vol.40 , Issue.6 , pp. 1155-1169
    • Oakes, N.D.1    Kjellstedt, A.2    Forsberg, G.B.3
  • 109
    • 0036316341 scopus 로고    scopus 로고
    • Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats
    • Hegarty BD, Cooney GJ, Kraegen EW, Furler SM. Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes 51(5), 1477-1484 (2002).
    • (2002) Diabetes , vol.51 , Issue.5 , pp. 1477-1484
    • Hegarty, B.D.1    Cooney, G.J.2    Kraegen, E.W.3    Furler, S.M.4
  • 111
    • 33748153705 scopus 로고    scopus 로고
    • Metabolic syndrome: Adenosine monophosphate-activated protein kinase and malonyl coenzyme A
    • Ruderman NB, Saha AK. Metabolic syndrome: adenosine monophosphate- activated protein kinase and malonyl coenzyme A. Obesity 14 (Suppl.), S125-S133 (2006).
    • (2006) Obesity , vol.14 SUPPL
    • Ruderman, N.B.1    Saha, A.K.2
  • 112
    • 84255186061 scopus 로고    scopus 로고
    • The nuclear receptor pparbeta/delta programs muscle glucose metabolism in cooperation with ampk and mef2
    • Gan Z, Burkart-Hartman EM, Han DH et al. The nuclear receptor PPARbeta/delta programs muscle glucose metabolism in cooperation with AMPK and MEF2. Genes Dev. 25(24), 2619-2630 (2011).
    • (2011) Genes Dev. , vol.25 , Issue.24 , pp. 2619-2630
    • Gan, Z.1    Burkart-Hartman, E.M.2    Han, D.H.3
  • 113
    • 80052303616 scopus 로고    scopus 로고
    • PPARbeta activation induces rapid changes of both AMPK subunit expression and AMPK activation in mouse skeletal muscle
    • Lendoye E, Sibille B, Rousseau AS, Murdaca J, Grimaldi PA, Lopez P. PPARbeta activation induces rapid changes of both AMPK subunit expression and AMPK activation in mouse skeletal muscle. Mol. Endocrinol. 25(9), 1487-1498 (2011).
    • (2011) Mol. Endocrinol. , vol.25 , Issue.9 , pp. 1487-1498
    • Lendoye, E.1    Sibille, B.2    Rousseau, A.S.3    Murdaca, J.4    Grimaldi, P.A.5    Lopez, P.6
  • 114
    • 84856705923 scopus 로고    scopus 로고
    • The peroxisome proliferator-activated receptor (PPAR) ß/dagonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells
    • Serrano-Marco L, Barroso E, El Kochairi I et al. The peroxisome proliferator-activated receptor (PPAR) ß/dagonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 55(3), 743-51 (2012).
    • (2012) Diabetologia , vol.55 , Issue.3 , pp. 743-751
    • Serrano-Marco, L.1    Barroso, E.2    El Kochairi, I.3
  • 115
    • 79955368052 scopus 로고    scopus 로고
    • The PPARbeta/delta activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1alpha-Lipin 1-PPARalpha pathway leading to increased fatty acid oxidation
    • Barroso E, Rodriguez-Calvo R, Serrano- Marco L et al. The PPARbeta/delta activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1alpha-Lipin 1-PPARalpha pathway leading to increased fatty acid oxidation. Endocrinology 152(5), 1848-1859 (2011).
    • (2011) Endocrinology , vol.152 , Issue.5 , pp. 1848-1859
    • Barroso, E.1    Rodriguez-Calvo, R.2    Serrano- Marco, L.3
  • 116
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha VK, Lindgren CM, Eriksson KF et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34(3), 267-273 (2003).
    • (2003) Nat. Genet. , vol.34 , Issue.3 , pp. 267-273
    • Mootha, V.K.1    Lindgren, C.M.2    Eriksson, K.F.3
  • 117
    • 0036788293 scopus 로고    scopus 로고
    • Dysfunction of mitochondria in human skeletal muscle in Type 2 diabetes
    • Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in Type 2 diabetes. Diabetes 51(10), 2944-2950 (2002).
    • (2002) Diabetes , vol.51 , Issue.10 , pp. 2944-2950
    • Kelley, D.E.1    He, J.2    Menshikova, E.V.3    Ritov, V.B.4
  • 118
    • 29244436681 scopus 로고    scopus 로고
    • AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1
    • Lee WJ, Kim M, Park HS et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem. Biophys. Res. Commun. 340(1), 291-295 (2006).
    • (2006) Biochem. Biophys. Res. Commun. , vol.340 , Issue.1 , pp. 291-295
    • Lee, W.J.1    Kim, M.2    Park, H.S.3
  • 120
    • 26844558334 scopus 로고    scopus 로고
    • Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
    • Nisoli E, Tonello C, Cardile A et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746), 314-317 (2005).
    • (2005) Science , vol.310 , Issue.5746 , pp. 314-317
    • Nisoli, E.1    Tonello, C.2    Cardile, A.3
  • 121
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
    • Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 280(16), 16456-16460 (2005).
    • (2005) J. Biol. Chem. , vol.280 , Issue.16 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 122
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029), 113-118 (2005).
    • (2005) Nature , vol.434 , Issue.7029 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 123
    • 80051609656 scopus 로고    scopus 로고
    • Calorie restriction: Is AMPK a key sensor and effector
    • Canto C, Auwerx J Calorie restriction: is AMPK a key sensor and effector? Physiology 26(4), 214-224 (2011).
    • (2011) Physiology , vol.26 , Issue.4 , pp. 214-224
    • Canto, C.1    Auwerx, J.2
  • 124
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Canto C, Jiang LQ, Deshmukh AS et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11(3), 213-219 (2010).
    • (2010) Cell Metab. , vol.11 , Issue.3 , pp. 213-219
    • Canto, C.1    Jiang, L.Q.2    Deshmukh, A.S.3
  • 125
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey MD, Shimazu T, Goetzman E et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285), 121-125 (2010).
    • (2010) Nature , vol.464 , Issue.7285 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 126
    • 0033594980 scopus 로고    scopus 로고
    • A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: The PPARalpha-null mouse as a model of fatty acid oxidation disorders
    • Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA 96(13), 7473-7478 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , Issue.13 , pp. 7473-7478
    • Leone, T.C.1    Weinheimer, C.J.2    Kelly, D.P.3
  • 127
    • 0032699670 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
    • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103(11), 1489-1498 (1999).
    • (1999) J. Clin. Invest. , vol.103 , Issue.11 , pp. 1489-1498
    • Kersten, S.1    Seydoux, J.2    Peters, J.M.3    Gonzalez, F.J.4    Desvergne, B.5    Wahli, W.6
  • 128
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • Hirschey MD, Shimazu T, Jing E et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44(2), 177-190 (2011).
    • (2011) Mol. Cell , vol.44 , Issue.2 , pp. 177-190
    • Hirschey, M.D.1    Shimazu, T.2    Jing, E.3
  • 129
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn BH, Kim HS, Song S et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105(38), 14447-14452 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , Issue.38 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3
  • 130
    • 80052291180 scopus 로고    scopus 로고
    • Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
    • Jing E, Emanuelli B, Hirschey MD et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl Acad. Sci. USA 108(35), 14608-14613 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , Issue.35 , pp. 14608-14613
    • Jing, E.1    Emanuelli, B.2    Hirschey, M.D.3
  • 131
    • 80053562936 scopus 로고    scopus 로고
    • AMP activated protein kinase-alpha2 regulates expression of estrogen-related receptor-alpha, a metabolic transcription factor related to heart failure development
    • Hu X, Xu X, Lu Z et al. AMP activated protein kinase-alpha2 regulates expression of estrogen-related receptor-alpha, a metabolic transcription factor related to heart failure development. Hypertension 58(4), 696-703 (2011).
    • (2011) Hypertension , vol.58 , Issue.4 , pp. 696-703
    • Hu, X.1    Xu, X.2    Lu, Z.3
  • 132
    • 4043171462 scopus 로고    scopus 로고
    • Upstream and downstream of mTOR
    • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 18(16), 1926-1945 (2004).
    • (2004) Genes Dev. , vol.18 , Issue.16 , pp. 1926-1945
    • Hay, N.1    Sonenberg, N.2
  • 133
    • 70350418625 scopus 로고    scopus 로고
    • MTOR signaling at a glance
    • Laplante M, Sabatini DM. mTOR signaling at a glance. J. Cell Sci. 122(20), 3589-3594 (2009).
    • (2009) J. Cell Sci. , vol.122 , Issue.20 , pp. 3589-3594
    • Laplante, M.1    Sabatini, D.M.2
  • 134
    • 77952007543 scopus 로고    scopus 로고
    • Mammalian target of rapamycin (mTOR): Conducting the cellular signaling symphony
    • Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J. Biol. Chem. 285(19), 14071-14077 (2010).
    • (2010) J. Biol. Chem. , vol.285 , Issue.19 , pp. 14071-14077
    • Foster, K.G.1    Fingar, D.C.2
  • 135
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 40(2), 310-322 (2010).
    • (2010) Mol. Cell , vol.40 , Issue.2 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 136
    • 80051637832 scopus 로고    scopus 로고
    • Proud CG. mTORC1 signaling: What we still don't know
    • Wang X, Proud CG. mTORC1 signaling: what we still don't know. J. Mol. Cell Biol 3(4), 206-220 (2011).
    • (2011) J. Mol. Cell Biol , vol.3 , Issue.4 , pp. 206-220
    • Wang, X.1
  • 137
    • 78650510609 scopus 로고    scopus 로고
    • Sabatini DM mTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12(1), 21-35 (2011).
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , Issue.1 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2
  • 138
    • 70450204007 scopus 로고    scopus 로고
    • An emerging role of mTOR in lipid biosynthesis
    • Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19(22), R1046-R1052 (2009).
    • (2009) Curr. Biol. , vol.19 , Issue.22
    • Laplante, M.1    Sabatini, D.M.2
  • 139
    • 78650848337 scopus 로고    scopus 로고
    • Sabatini DM mTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468(7327), 1100-1104 (2010).
    • (2010) Nature , vol.468 , Issue.7327 , pp. 1100-1104
    • Sengupta, S.1    Peterson, T.R.2    Laplante, M.3    Oh, S.4
  • 140
    • 77950501014 scopus 로고    scopus 로고
    • MTOR regulation of autophagy
    • Jung CH, Ro SH, Cao J et al. mTOR regulation of autophagy. FEBS Lett. 584(7), 1287-1295 (2010).
    • (2010) FEBS Lett. , vol.584 , Issue.7 , pp. 1287-1295
    • Jung, C.H.1    Ro, S.H.2    Cao, J.3
  • 141
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth autophagy and metabolism
    • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat.Cell Biol. 13(9), 1016-1023 (2011).
    • (2011) Nat.Cell Biol. , vol.13 , Issue.9 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 142
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712), 1098-1101 (2005).
    • (2005) Science , vol.307 , Issue.5712 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 143
    • 77953200528 scopus 로고    scopus 로고
    • Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
    • Kumar A, Lawrence JC Jr, Jung DY et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59(6), 1397-1406 (2010).
    • (2010) Diabetes , vol.59 , Issue.6 , pp. 1397-1406
    • Kumar, A.1    Lawrence Jr., J.C.2    Jung, D.Y.3
  • 144
    • 0028360374 scopus 로고
    • A mammalian protein targeted by G1-arresting rapamycin-receptor complex
    • Brown EJ, Albers MW, Shin TB et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483), 756-758 (1994).
    • (1994) Nature , vol.369 , Issue.6483 , pp. 756-758
    • Brown, E.J.1    Albers, M.W.2    Shin, T.B.3
  • 145
    • 0028239893 scopus 로고
    • RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
    • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1), 35-43 (1994).
    • (1994) Cell , vol.78 , Issue.1 , pp. 35-43
    • Sabatini, D.M.1    Erdjument-Bromage, H.2    Lui, M.3    Tempst, P.4    Snyder, S.H.5
  • 146
    • 60149091189 scopus 로고    scopus 로고
    • Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
    • Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4), 731-745 (2009).
    • (2009) Cell , vol.136 , Issue.4 , pp. 731-745
    • Sonenberg, N.1    Hinnebusch, A.G.2
  • 147
    • 34247118887 scopus 로고    scopus 로고
    • Signalling to translation: How signal transduction pathways control the protein synthetic machinery
    • Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem. J. 403(2), 217-234 (2007).
    • (2007) Biochem. J. , vol.403 , Issue.2 , pp. 217-234
    • Proud, C.G.1
  • 148
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10(5), 307-318 (2009).
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , Issue.5 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 149
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
    • Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412(2), 179-190 (2008).
    • (2008) Biochem. J. , vol.412 , Issue.2 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 150
    • 34347242470 scopus 로고    scopus 로고
    • RAS/ ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation
    • Roux PP, Shahbazian D, Vu H et al. RAS/ ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J. Biol. Chem. 282(19), 14056-14064 (2007).
    • (2007) J. Biol. Chem. , vol.282 , Issue.19 , pp. 14056-14064
    • Roux, P.P.1    Shahbazian, D.2    Vu, H.3
  • 151
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5), 577-590 (2003).
    • (2003) Cell , vol.115 , Issue.5 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 152
    • 0032560521 scopus 로고    scopus 로고
    • Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway
    • Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA 95(13), 7772-7777 (1998).
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , Issue.13 , pp. 7772-7777
    • Scott, P.H.1    Brunn, G.J.2    Kohn, A.D.3    Roth, R.A.4    Lawrence Jr., J.C.5
  • 153
    • 0033429554 scopus 로고    scopus 로고
    • Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
    • 344 P.t.
    • Navé BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344 Pt 2, 427-2431 (1999).
    • (1999) Biochem. J. , vol.2 , pp. 427-2431
    • Navé, B.T.1    Ouwens, M.2    Withers, D.J.3    Alessi, D.R.4    Shepherd, P.R.5
  • 154
    • 0034234924 scopus 로고    scopus 로고
    • A direct linkage between the phosphoinositide 3-kinase-akt signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells
    • Sekulic A, Hudson CC, Homme JL et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60(13), 3504-3513 (2000).
    • (2000) Cancer Res. , vol.60 , Issue.13 , pp. 3504-3513
    • Sekulic, A.1    Hudson, C.C.2    Homme, J.L.3
  • 155
    • 21844468767 scopus 로고    scopus 로고
    • Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase
    • Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280(27), 25485-25490 (2005).
    • (2005) J. Biol. Chem. , vol.280 , Issue.27 , pp. 25485-25490
    • Chiang, G.G.1    Abraham, R.T.2
  • 156
    • 22544455676 scopus 로고    scopus 로고
    • Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
    • Holz MK, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 280(28), 26089-26093 (2005).
    • (2005) J. Biol. Chem. , vol.280 , Issue.28 , pp. 26089-26093
    • Holz, M.K.1    Blenis, J.2
  • 157
    • 0034629365 scopus 로고    scopus 로고
    • FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions
    • Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J. Biol. Chem. 275(10), 7416-7423 (2000).
    • (2000) J. Biol. Chem. , vol.275 , Issue.10 , pp. 7416-7423
    • Peterson, R.T.1    Beal, P.A.2    Comb, M.J.3    Schreiber, S.L.4
  • 158
    • 67651210833 scopus 로고    scopus 로고
    • Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth
    • Acosta-Jaquez HA, Keller JA, Foster KG et al. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol. Cell Biol. 29(15), 4308-4324 (2009).
    • (2009) Mol. Cell Biol. , vol.29 , Issue.15 , pp. 4308-4324
    • Acosta-Jaquez, H.A.1    Keller, J.A.2    Foster, K.G.3
  • 159
    • 62449266454 scopus 로고    scopus 로고
    • TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): Phospho- Ser2481 is a marker for intact mTOR signaling complex 2
    • Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho- Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 69(5), 1821-1827 (2009).
    • (2009) Cancer Res. , vol.69 , Issue.5 , pp. 1821-1827
    • Copp, J.1    Manning, G.2    Hunter, T.3
  • 160
    • 1942469564 scopus 로고    scopus 로고
    • Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status
    • Cheng SW, Fryer LG, Carling D, Shepherd PR. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem. 279(16), 15719-15722 (2004).
    • (2004) J. Biol. Chem. , vol.279 , Issue.16 , pp. 15719-15722
    • Cheng, S.W.1    Fryer, L.G.2    Carling, D.3    Shepherd, P.R.4
  • 161
    • 79960349522 scopus 로고    scopus 로고
    • Fingar DC mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression
    • Ekim B, Magnuson B, Acosta-Jaquez HA, Keller JA, Feener EP, Fingar DC. mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol. Cell Biol. 31(14), 2787-2801 (2011).
    • (2011) Mol. Cell Biol. , vol.31 , Issue.14 , pp. 2787-2801
    • Ekim, B.1    Magnuson, B.2    Acosta-Jaquez, H.A.3    Keller, J.A.4    Feener, E.P.5
  • 162
    • 34547133519 scopus 로고    scopus 로고
    • The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
    • Oshiro N, Takahashi R, Yoshino K et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282(28), 20329-20339 (2007).
    • (2007) J. Biol. Chem. , vol.282 , Issue.28 , pp. 20329-20339
    • Oshiro, N.1    Takahashi, R.2    Yoshino, K.3
  • 163
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak Y, Thoreen CC, Peterson TR et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25(6), 903-915 (2007).
    • (2007) Mol. Cell , vol.25 , Issue.6 , pp. 903-915
    • Sancak, Y.1    Thoreen, C.C.2    Peterson, T.R.3
  • 165
    • 47049127002 scopus 로고    scopus 로고
    • Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
    • Wang L, Harris TE, Lawrence JC Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 283(23), 15619-15627 (2008).
    • (2008) J. Biol. Chem. , vol.283 , Issue.23 , pp. 15619-15627
    • Wang, L.1    Harris, T.E.2    Lawrence, Jr.J.C.3
  • 166
    • 80755190061 scopus 로고    scopus 로고
    • Proline-rich Akt substrate of 40kDa (PRAS40): A novel downstream target of PI3K/Akt signaling pathway
    • Wang H, Zhang Q, Wen Q et al. Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3K/Akt signaling pathway. Cell Signal. 24(1), 17-24 (2012).
    • (2012) Cell Signal. , vol.24 , Issue.1 , pp. 17-24
    • Wang, H.1    Zhang, Q.2    Wen, Q.3
  • 167
    • 37549054706 scopus 로고    scopus 로고
    • Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated Type 2 diabetic patients
    • Jazet IM, Schaart G, Gastaldelli A et al. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated Type 2 diabetic patients. Diabetologia 51(2), 309-319 (2008).
    • (2008) Diabetologia , vol.51 , Issue.2 , pp. 309-319
    • Jazet, I.M.1    Schaart, G.2    Gastaldelli, A.3
  • 168
    • 34249679614 scopus 로고    scopus 로고
    • Thomas G mTOR Complex1-S6K1 signaling: At the crossroads of obesity, diabetes and cancer
    • Dann SG, Selvaraj A, Thomas G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol. Med. 13(6), 252-259 (2007).
    • (2007) Trends Mol. Med. , vol.13 , Issue.6 , pp. 252-259
    • Dann, S.G.1    Selvaraj, A.2
  • 169
    • 67650523945 scopus 로고    scopus 로고
    • Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
    • Zhang HH, Huang J, Duvel K et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 4(7), e6189 (2009).
    • (2009) PLoS One , vol.4 , Issue.7
    • Zhang, H.H.1    Huang, J.2    Duvel, K.3
  • 170
    • 67649344456 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR
    • Wang L, Lawrence JC Jr, Sturgill TW, Harris TE. Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J. Biol. Chem. 284(22), 14693-14697 (2009).
    • (2009) J. Biol. Chem. , vol.284 , Issue.22 , pp. 14693-14697
    • Wang, L.1    Lawrence Jr., J.C..2    Sturgill, T.W.3    Harris, T.E.4
  • 171
    • 78650943298 scopus 로고    scopus 로고
    • ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1)
    • Carriere A, Romeo Y, Acosta-Jaquez HA et al. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 286(1), 567-577 (2011).
    • (2011) J. Biol. Chem. , vol.286 , Issue.1 , pp. 567-577
    • Carriere, A.1    Romeo, Y.2    Acosta-Jaquez, H.A.3
  • 172
    • 51049083138 scopus 로고    scopus 로고
    • Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
    • Carriere A, Cargnello M, Julien LA et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18(17), 1269-1277 (2008).
    • (2008) Curr. Biol. , vol.18 , Issue.17 , pp. 1269-1277
    • Carriere, A.1    Cargnello, M.2    Julien, L.A.3
  • 173
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, Shackelford DB, Egan DF et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30(2), 214-226 (2008).
    • (2008) Mol. Cell , vol.30 , Issue.2 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 174
    • 79951812916 scopus 로고    scopus 로고
    • Telomere dysfunction induces metabolic and mitochondrial compromise
    • Sahin E, Colla S, Liesa M et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334), 359-365 (2011).
    • (2011) Nature , vol.470 , Issue.7334 , pp. 359-365
    • Sahin, E.1    Colla, S.2    Liesa, M.3
  • 175
    • 77956301445 scopus 로고    scopus 로고
    • 4E-bps at the crossroads of oncogenic mapk and akt signaling
    • Topisirovic I, Sonenberg N. 4E-BPs at the crossroads of oncogenic MAPK and AKT signaling. Pigment Cell Melanoma Res. 23(5), 585-586 (2010).
    • (2010) Pigment Cell Melanoma Res. , vol.23 , Issue.5 , pp. 585-586
    • Topisirovic, I.1    Sonenberg, N.2
  • 176
    • 0041695625 scopus 로고    scopus 로고
    • Effects of fk506 and rapamycin on generation of reactive oxygen species, nitric oxide production and nuclear factor kappa b activation in rat hepatocytes
    • Tuñón MJ, Sánchez-Campos S, Gutiérrez B, Culebras JM, González-Gallego J. Effects of FK506 and rapamycin on generation of reactive oxygen species, nitric oxide production and nuclear factor kappa B activation in rat hepatocytes. Biochem. Pharmacol. 66(3), 439-445 (2003).
    • (2003) Biochem. Pharmacol. , vol.66 , Issue.3 , pp. 439-445
    • Tuñón, M.J.1    Sánchez-Campos, S.2    Gutiérrez, B.3    Culebras, J.M.4    González-Gallego, J.5
  • 177
    • 20844448882 scopus 로고    scopus 로고
    • Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species
    • Kim JH, Chu SC, Gramlich JL et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 105(4), 1717-1723 (2005).
    • (2005) Blood , vol.105 , Issue.4 , pp. 1717-1723
    • Kim, J.H.1    Chu, S.C.2    Gramlich, J.L.3
  • 178
    • 0037043851 scopus 로고    scopus 로고
    • P53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1 inhibition of ribosomal protein S6 kinase and inhibition of translation initiation
    • Horton LE, Bushell M, Barth-Baus D, Tilleray VJ, Clemens MJ, Hensold JO. p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene 21(34), 5325-5334 (2002).
    • (2002) Oncogene , vol.21 , Issue.34 , pp. 5325-5334
    • Horton, L.E.1    Bushell, M.2    Barth-Baus, D.3    Tilleray, V.J.4    Clemens, M.J.5    Hensold, J.O.6
  • 179
    • 20444363122 scopus 로고    scopus 로고
    • The coordinate regulation of the p53 and mTOR pathways in cells
    • Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102(23), 8204-8209 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , Issue.23 , pp. 8204-8209
    • Feng, Z.1    Zhang, H.2    Levine, A.J.3    Jin, S.4
  • 180
    • 77951176737 scopus 로고    scopus 로고
    • Extending healthy life span - From yeast to humans
    • Fontana L, Partridge L, Longo VD. Extending healthy life span - from yeast to humans. Science 328(5976), 321-326 (2010).
    • (2010) Science , vol.328 , Issue.5976 , pp. 321-326
    • Fontana, L.1    Partridge, L.2    Longo, V.D.3
  • 182
    • 4544311861 scopus 로고    scopus 로고
    • The TOR pathway interacts with the insulin signaling pathway to regulate c elegans larval development metabolism and life span
    • Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131(16), 3897-3906 (2004).
    • (2004) Development , vol.131 , Issue.16 , pp. 3897-3906
    • Jia, K.1    Chen, D.2    Riddle, D.L.3
  • 183
    • 27744511769 scopus 로고    scopus 로고
    • Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients
    • Kaeberlein M, Powers RW 3rd, Steffen KK et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751), 1193-1196 (2005).
    • (2005) Science , vol.310 , Issue.5751 , pp. 1193-1196
    • Kaeberlein, M.1    Powers III, R.W.2    Steffen, K.K.3
  • 184
    • 67650944993 scopus 로고    scopus 로고
    • Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
    • Harrison DE, Strong R, Sharp ZD et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253), 392-395 (2009).
    • (2009) Nature , vol.460 , Issue.7253 , pp. 392-395
    • Harrison, D.E.1    Strong, R.2    Sharp, Z.D.3
  • 185
    • 33846423520 scopus 로고    scopus 로고
    • Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans
    • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6(1), 95-110 (2007).
    • (2007) Aging Cell , vol.6 , Issue.1 , pp. 95-110
    • Hansen, M.1    Taubert, S.2    Crawford, D.3    Libina, N.4    Lee, S.J.5    Kenyon, C.6
  • 186
    • 70349669095 scopus 로고    scopus 로고
    • Ribosomal protein S6 kinase 1 signaling regulates mammalian life span
    • Selman C, Tullet JM, Wieser D et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326(5949), 140-144 (2009).
    • (2009) Science , vol.326 , Issue.5949 , pp. 140-144
    • Selman, C.1    Tullet, J.M.2    Wieser, D.3
  • 188
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • Cheng HL, Mostoslavsky R, Saito S et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA 100(19), 10794-10799 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , Issue.19 , pp. 10794-10799
    • Cheng, H.L.1    Mostoslavsky, R.2    Saito, S.3
  • 189
    • 79959962745 scopus 로고    scopus 로고
    • Hormonal regulation of hepatic glucose production in health and disease
    • Lin HV, Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14(1), 9-19 (2011).
    • (2011) Cell Metab. , vol.14 , Issue.1 , pp. 9-19
    • Lin, H.V.1    Accili, D.2
  • 190
    • 34548349302 scopus 로고    scopus 로고
    • Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver
    • Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6(3), 208-216 (2007).
    • (2007) Cell Metab. , vol.6 , Issue.3 , pp. 208-216
    • Matsumoto, M.1    Pocai, A.2    Rossetti, L.3    Depinho, R.A.4    Accili, D.5
  • 191
    • 79952693613 scopus 로고    scopus 로고
    • Regulation of hepatic metabolism by AMPK
    • Foretz M, Viollet B. Regulation of hepatic metabolism by AMPK. J. Hepatol. 54(4), 827-829 (2011).
    • (2011) J. Hepatol. , vol.54 , Issue.4 , pp. 827-829
    • Foretz, M.1    Viollet, B.2
  • 192
    • 75349099919 scopus 로고    scopus 로고
    • Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer
    • Fogarty S, Hardie DG. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804(3), 581-591 (2010).
    • (2010) Biochim. Biophys. Acta , vol.1804 , Issue.3 , pp. 581-591
    • Fogarty, S.1    Hardie, D.G.2
  • 193
    • 78650987216 scopus 로고    scopus 로고
    • Sirtuin-1 regulation of mammalian metabolism
    • 10.1016/j.molmed.2010.09.005 Epub ahead of print
    • Gillum MP, Erion DM, Shulman GI. Sirtuin-1 regulation of mammalian metabolism. Trends Mol. Med. doi:10.1016/j.molmed.2010.09.005 (2011) (Epub ahead of print).
    • (2011) Trends Mol. Med.
    • Gillum, M.P.1    Erion, D.M.2    Shulman, G.I.3
  • 194
    • 67650488877 scopus 로고    scopus 로고
    • Sirt1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats
    • Erion DM, Yonemitsu S, Nie Y et al. Sirt1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl Acad. Sci. USA 106(27), 11288-11293 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , Issue.27 , pp. 11288-11293
    • Erion, D.M.1    Yonemitsu, S.2    Nie, Y.3
  • 195
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou G, Myers R, Li Y et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108(8), 1167-1174 (2001).
    • (2001) J. Clin. Invest. , vol.108 , Issue.8 , pp. 1167-1174
    • Zhou, G.1    Myers, R.2    Li, Y.3
  • 196
    • 77956821651 scopus 로고    scopus 로고
    • GA. Metformin action on AMP-activated protein kinase: A translational research approach to understanding a potential new therapeutic target
    • McKay
    • Boyle JG, Salt IP, McKay GA. Metformin action on AMP-activated protein kinase: a translational research approach to understanding a potential new therapeutic target. Diabet. Med. 27(10), 1097-1106 (2010).
    • (2010) Diabet. Med. , vol.27 , Issue.10 , pp. 1097-1106
    • Boyle, J.G.1    Salt, I.P.2
  • 197
    • 75749083676 scopus 로고    scopus 로고
    • Overexpression of AMPKalpha1 ameliorates fatty liver in hyperlipidemic diabetic rats
    • Seo E, Park EJ, Joe Y et al. Overexpression of AMPKalpha1 ameliorates fatty liver in hyperlipidemic diabetic rats. Korean J. Physiol. Pharmacol. 13(6), 449-454 (2009).
    • (2009) Korean J. Physiol. Pharmacol. , vol.13 , Issue.6 , pp. 449-454
    • Seo, E.1    Park, E.J.2    Joe, Y.3
  • 198
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • Foretz M, Hebrard S, Leclerc J et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120(7), 2355-2369 (2010).
    • (2010) J. Clin. Invest. , vol.120 , Issue.7 , pp. 2355-2369
    • Foretz, M.1    Hebrard, S.2    Leclerc, J.3
  • 199
    • 77954282799 scopus 로고    scopus 로고
    • Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action
    • Takashima M, Ogawa W, Hayashi K et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 59(7), 1608-1615 (2010).
    • (2010) Diabetes , vol.59 , Issue.7 , pp. 1608-1615
    • Takashima, M.1    Ogawa, W.2    Hayashi, K.3
  • 200
    • 80555146753 scopus 로고    scopus 로고
    • Hepatic Sirt1 deficiency in mice impairs mTorc2/ Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
    • Wang RH, Kim HS, Xiao C et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/ Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 121(11), 4477-4490 (2011).
    • (2011) J. Clin. Invest. , vol.121 , Issue.11 , pp. 4477-4490
    • Wang, R.H.1    Kim, H.S.2    Xiao, C.3
  • 201
    • 79953755370 scopus 로고    scopus 로고
    • AMPK phosphorylates and inhibits srebp activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
    • Li Y, Xu S, Mihaylova MM et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13(4), 376-388 (2011).
    • (2011) Cell Metab. , vol.13 , Issue.4 , pp. 376-388
    • Li, Y.1    Xu, S.2    Mihaylova, M.M.3
  • 202
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1- Dependent and independent pathways
    • Yecies JL, Zhang HH, Menon S et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1- dependent and independent pathways. Cell Metab. 14(1), 21-32 (2011).
    • (2011) Cell Metab. , vol.14 , Issue.1 , pp. 21-32
    • Yecies, J.L.1    Zhang, H.H.2    Menon, S.3
  • 203
    • 45549104962 scopus 로고    scopus 로고
    • The double life of Irs
    • Haeusler RA, Accili D. The double life of Irs. Cell Metab. 8(1), 7-9 (2008).
    • (2008) Cell Metab. , vol.8 , Issue.1 , pp. 7-9
    • Haeusler, R.A.1    Accili, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.