메뉴 건너뛰기




Volumn , Issue , 2012, Pages 333-342

Fair and balanced: Learning to present news stories

Author keywords

Graphical models; Online learning; Personalization; Submodularity

Indexed keywords

CLASSICAL CONTEXT; DETAILED MODELS; EFFICIENT ALGORITHM; EXPLICIT FEEDBACK; FACTORIZATION MODEL; GRAPHICAL MODEL; ON-LINE ALGORITHMS; ONLINE LEARNING; PERSONALIZATIONS; RELEVANCE RANKING; RETRIEVAL SYSTEMS; SUBMODULAR FUNCTIONS; SUBMODULARITY; USER'S INTEREST;

EID: 84858037294     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2124295.2124337     Document Type: Conference Paper
Times cited : (34)

References (22)
  • 1
    • 70349138027 scopus 로고    scopus 로고
    • Diversifying search results
    • R.A. Baeza-Yates, P. Boldi, B.A. Ribeiro-Neto, and B.B. Cambazoglu, editors. ACM
    • R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In R.A. Baeza-Yates, P. Boldi, B.A. Ribeiro-Neto, and B.B. Cambazoglu, editors, WSDM, pages 5-14. ACM, 2009.
    • (2009) WSDM , pp. 5-14
    • Agrawal, R.1    Gollapudi, S.2    Halverson, A.3    Ieong, S.4
  • 2
    • 84858053680 scopus 로고    scopus 로고
    • Online inference for the Infinite topic-cluster model: Storylines from streaming text
    • A. Ahmed, Q. Ho, C. H. Teo, J. Eisenstein, A. J. Smola and E. P. Xing. Online inference for the Infinite topic-cluster model: storylines from streaming text In AISTATS, 2011.
    • (2011) AISTATS
    • Ahmed, A.1    Ho, Q.2    Teo, C.H.3    Eisenstein, J.4    Smola, A.J.5    Xing, E.P.6
  • 3
    • 68949096711 scopus 로고    scopus 로고
    • SGD-QN: Careful quasi-Newton stochastic gradient descent
    • A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent. JMLR, 10:1737-1754, 2009.
    • (2009) JMLR , vol.10 , pp. 1737-1754
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3
  • 5
    • 84865624822 scopus 로고    scopus 로고
    • A dynamic bayesian network click model for web search ranking
    • J. Quemada, G. León, Y.S. Maarek, and W. Nejdl, editors. ACM
    • O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search ranking. In J. Quemada, G. León, Y.S. Maarek, and W. Nejdl, editors, WWW, pages 1-10. ACM, 2009.
    • (2009) WWW , pp. 1-10
    • Chapelle, O.1    Zhang, Y.2
  • 7
    • 77950921696 scopus 로고    scopus 로고
    • A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine
    • B. D. Davison, T. Suel, N. Craswell, and B. Liu, editors. ACM
    • G. Dupret and C. Liao. A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine. In B. D. Davison, T. Suel, N. Craswell, and B. Liu, editors, WSDM, pages 181-190. ACM, 2010.
    • (2010) WSDM , pp. 181-190
    • Dupret, G.1    Liao, C.2
  • 8
    • 35448949581 scopus 로고    scopus 로고
    • Internet advertising and the generalized second price auction: Selling billions of dollars worth of keywords
    • B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized second price auction: Selling billions of dollars worth of keywords. American Economic Review, 97(1):242-259, 2007.
    • (2007) American Economic Review , vol.97 , Issue.1 , pp. 242-259
    • Edelman, B.1    Ostrovsky, M.2    Schwarz, M.3
  • 9
    • 70350668602 scopus 로고    scopus 로고
    • Turning down the noise in the blogosphere
    • J. F. Elder IV, F. Fogelman-Soulié, P. A. Flach, and M. J. Zaki, editors. ACM
    • K. El-Arini, G. Veda, D. Shahaf, and C. Guestrin. Turning down the noise in the blogosphere. In J. F. Elder IV, F. Fogelman-Soulié, P. A. Flach, and M. J. Zaki, editors, KDD, pages 289-298. ACM, 2009.
    • (2009) KDD , pp. 289-298
    • El-Arini, K.1    Veda, G.2    Shahaf, D.3    Guestrin, C.4
  • 10
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-64, 1997.
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.K.2
  • 11
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R.M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.M.2    Volinsky, C.3
  • 13
    • 80052129511 scopus 로고    scopus 로고
    • Viewser: Enabling large-scale remote user studies of web search examination and interaction
    • D. Lagun and E. Agichtein. Viewser: Enabling large-scale remote user studies of web search examination and interaction. In ACM SIGIR, 2011.
    • (2011) ACM SIGIR
    • Lagun, D.1    Agichtein, E.2
  • 15
    • 84863338141 scopus 로고    scopus 로고
    • Multi-document summarization via budgeted maximization of submodular functions
    • ACL
    • H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submodular functions. In NAACL, pages 912-920. ACL, 2010.
    • (2010) NAACL , pp. 912-920
    • Lin, H.1    Bilmes, J.2
  • 16
    • 0000095809 scopus 로고
    • An analysis of the approximations for maximizing submodular set functions
    • G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Math. Programming, 14:265-294, 1978.
    • (1978) Math. Programming , vol.14 , pp. 265-294
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 20
    • 71149087699 scopus 로고    scopus 로고
    • Feature hashing for large scale multitask learning
    • L. Bottou and M. Littman, editors
    • K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A.J. Smola. Feature hashing for large scale multitask learning. In L. Bottou and M. Littman, editors, ICML, 2009.
    • (2009) ICML
    • Weinberger, K.1    Dasgupta, A.2    Attenberg, J.3    Langford, J.4    Smola, A.J.5
  • 22
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalised infinitesimal gradient ascent
    • M. Zinkevich. Online convex programming and generalised infinitesimal gradient ascent. In ICML, pages 928-936, 2003.
    • (2003) ICML , pp. 928-936
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.