메뉴 건너뛰기




Volumn 31, Issue 7, 2012, Pages 661-671

Random effects models for assessing diagnostic accuracy of traditional Chinese doctors in absence of a gold standard

Author keywords

Diagnostic test; EM algorithm; Random effects models; Repeated ordinal data; Traditional Chinese medicine (TCM)

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; CHI SQUARE TEST; CHILL; CHINESE MEDICINE; CLINICAL ASSESSMENT; CLINICAL COMPETENCE; CLINICAL FEATURE; CLINICAL PRACTICE; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; DIAGNOSTIC VALUE; DISEASE SEVERITY; FALSE POSITIVE RESULT; GOLD STANDARD; HUMAN; KERNEL METHOD; LEARNING ALGORITHM; MAXIMUM LIKELIHOOD METHOD; PHYSICIAN ATTITUDE; RECEIVER OPERATING CHARACTERISTIC; STATISTICAL MODEL; VALIDATION PROCESS;

EID: 84858007332     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4275     Document Type: Article
Times cited : (12)

References (19)
  • 2
    • 21844479166 scopus 로고    scopus 로고
    • Hierarchical latent class models for cluster analysis
    • Zhang NL. Hierarchical latent class models for cluster analysis. Journal of Machine Learning Research 2004; 5(6):697-723.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.6 , pp. 697-723
    • Zhang, N.L.1
  • 3
    • 33750941213 scopus 로고    scopus 로고
    • Methodological review: knowledge discovery in traditional Chinese medicine: state of the art and perspectives
    • Feng Y, Wu Z, Zhou X, Zhou Z, Fan W. Methodological review: knowledge discovery in traditional Chinese medicine: state of the art and perspectives. Artificial Intelligence in Medicine 2006; 38(3):219-236.
    • (2006) Artificial Intelligence in Medicine , vol.38 , Issue.3 , pp. 219-236
    • Feng, Y.1    Wu, Z.2    Zhou, X.3    Zhou, Z.4    Fan, W.5
  • 4
    • 16244392379 scopus 로고    scopus 로고
    • Efficient learning of hierarchical latent class models. Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, 2004.
    • Zhang NL, Kocka T. Efficient learning of hierarchical latent class models. Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, 2004.
    • Zhang, N.L.1    Kocka, T.2
  • 5
    • 35148870102 scopus 로고    scopus 로고
    • Hierarchical latent class models and statistical foundation for traditional Chinese medicine
    • Zhang NL, Yuan S, Tao C, Wang Y. Hierarchical latent class models and statistical foundation for traditional Chinese medicine. Artificial Intelligence in Medicine 2007; 4594:139-143.
    • (2007) Artificial Intelligence in Medicine , vol.4594 , pp. 139-143
    • Zhang, N.L.1    Yuan, S.2    Tao, C.3    Wang, Y.4
  • 7
    • 0031772593 scopus 로고    scopus 로고
    • Estimating the error rates of diagnostic tests without gold standards
    • Hui SL, Zhou XH. Estimating the error rates of diagnostic tests without gold standards. Statistical Methods in Medical Research 1998; 7:354-370.
    • (1998) Statistical Methods in Medical Research , vol.7 , pp. 354-370
    • Hui, S.L.1    Zhou, X.H.2
  • 9
    • 79959483591 scopus 로고    scopus 로고
    • Evaluation of diagnostic accuracy in detecting ordered symptom statuses without a gold standard. Biostatistics; DOI: 10.1093/biostatistics/kxq075.
    • Wang Z, Zhou XH, Wang M. Evaluation of diagnostic accuracy in detecting ordered symptom statuses without a gold standard. Biostatistics 2011; DOI: 10.1093/biostatistics/kxq075.
    • (2011)
    • Wang, Z.1    Zhou, X.H.2    Wang, M.3
  • 11
    • 77956861396 scopus 로고    scopus 로고
    • Identifiability of models for multiple diagnostic testing in the absence of a gold standard
    • Geoffrey J, Wesley OJ, Timothy EH, Ronald C. Identifiability of models for multiple diagnostic testing in the absence of a gold standard. Biometrics 2010; 66:855-863.
    • (2010) Biometrics , vol.66 , pp. 855-863
    • Geoffrey, J.1    Wesley, O.J.2    Timothy, E.H.3    Ronald, C.4
  • 15
    • 84907319426 scopus 로고
    • Asympototic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
    • Self S, Liang KY. Asympototic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 1987; 82:605-610.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 605-610
    • Self, S.1    Liang, K.Y.2
  • 16
    • 0029795558 scopus 로고    scopus 로고
    • Random effects models in latent class analysis for evaluating accuary of diagnostic tests
    • Qu Y, Tan M, Kutner MH. Random effects models in latent class analysis for evaluating accuary of diagnostic tests. Biometrics 1996; 52:797-810.
    • (1996) Biometrics , vol.52 , pp. 797-810
    • Qu, Y.1    Tan, M.2    Kutner, M.H.3
  • 17
    • 0035009605 scopus 로고    scopus 로고
    • Latent class modeling approaches for assessing diagnostic error without a gold standard: with applications to p53 immunohistochemical assays in bladder tumors
    • The U.S. National Cancer Institute Bladder Tumor Marker Network.
    • Albert PS, McShane LM, Shih JH. The U.S. National Cancer Institute Bladder Tumor Marker Network. Latent class modeling approaches for assessing diagnostic error without a gold standard: with applications to p53 immunohistochemical assays in bladder tumors. Biometrics 2001; 57:610-619.
    • (2001) Biometrics , vol.57 , pp. 610-619
    • Albert, P.S.1    McShane, L.M.2    Shih, J.H.3
  • 18
    • 2942679728 scopus 로고    scopus 로고
    • A cautionary note on the robustness of latent class models for estimating diagnostic error without a gold standard
    • Albert PS, Dodd LE. A cautionary note on the robustness of latent class models for estimating diagnostic error without a gold standard. Biometrics 2004; 60:427-435.
    • (2004) Biometrics , vol.60 , pp. 427-435
    • Albert, P.S.1    Dodd, L.E.2
  • 19
    • 0025218705 scopus 로고
    • Consensus diagnoses and 'gold standards'
    • Begg CB, Metz CE. Consensus diagnoses and 'gold standards'. Medical Decision Making 1990; 10:29-30.
    • (1990) Medical Decision Making , vol.10 , pp. 29-30
    • Begg, C.B.1    Metz, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.