메뉴 건너뛰기




Volumn 47, Issue 4, 2011, Pages 439-448

Empirical correlation study of dryout heat transfer at high pressure using high order neural network and feed forward neural network

Author keywords

[No Author keywords available]

Indexed keywords

DRY-OUT; EMPIRICAL CORRELATIONS; FNN MODELS; HEAT TRANSFER PROBLEMS; HIDDEN LAYERS; HIGH PRESSURE; HIGH-ORDER NEURAL NETWORK; INPUT-OUTPUT MAPPING; LEARNING PARAMETERS; PREDICTION METHODS;

EID: 84857997921     PISSN: 09477411     EISSN: 14321181     Source Type: Journal    
DOI: 10.1007/s00231-010-0733-0     Document Type: Article
Times cited : (8)

References (32)
  • 1
    • 0032010654 scopus 로고    scopus 로고
    • Calculation of dryout and post-dryout heat transfer for tube geometry
    • PII S0301932297000578
    • Hoyer N (1998) Calculation of dryout and post-dryout heat transfer for tube geometry. Int J Multiph Flow 24:319-334 (Pubitemid 128457035)
    • (1998) International Journal of Multiphase Flow , vol.24 , Issue.2-7 , pp. 319-334
    • Hoyer, N.1
  • 2
    • 4344659796 scopus 로고    scopus 로고
    • Prediction of dryout and post-dryout heat transfer at high pressures using a one-dimensional three-fluid model
    • DOI 10.1016/j.ijheatmasstransfer.2004.03.028, PII S0017931004001280
    • Jayanti S, Valette M (2004) Prediction of dryout and postdryout heat transfer at high pressures using a one dimensional three-fluid model. Int J Heat Mass Transf 47:4895-4910 (Pubitemid 39131171)
    • (2004) International Journal of Heat and Mass Transfer , vol.47 , Issue.22 , pp. 4895-4910
    • Jayanti, S.1    Valette, M.2
  • 3
    • 0035781085 scopus 로고    scopus 로고
    • Critical heat flux in subcooled flowboilingan assessment of current understanding and future directions for research
    • Kandlikar SG (2001) Critical heat flux in subcooled flowboilingan assessment of current understanding and future directions for research. Mul Sci Tech 13:207-232
    • (2001) Mul Sci Tech , vol.13 , pp. 207-232
    • Kandlikar, S.G.1
  • 5
    • 0027105462 scopus 로고
    • Prediction of critical heat using a hybrid kohon-backpropagation neural network intelligent
    • Artificial Neural Networks in Eng. (ANNIE'92) St. Louis Missouri, USA
    • Yapo T, Embrechets ST, Cathey ST (1992) Prediction of critical heat using a hybrid kohon-backpropagation neural network intelligent. In: Eng. Systems through Artificial Neural Networksproc. Artificial Neural Networks in Eng. (ANNIE'92) St. Louis Missouri, USA, 2, pp 853-858
    • (1992) Eng. Systems through Artificial Neural Networksproc , vol.2 , pp. 853-858
    • Yapo, T.1    Embrechets, S.T.2    Cathey, S.T.3
  • 6
    • 0028761466 scopus 로고
    • Classification and prediction of the critical heat flux using fuzzy clustering and artificial neural networks
    • Moon S, Chang SH (1994) Classification and prediction of the critical heat flux using fuzzy clustering and artificial neural networks. Nucl Eng Des 150:151-161
    • (1994) Nucl Eng des , vol.150 , pp. 151-161
    • Moon, S.1    Chang, S.H.2
  • 7
    • 0002060271 scopus 로고    scopus 로고
    • Parametric trends analysis of the critical heat flux based on artificial neural networks
    • Moon S, Baek WP, Chang SH (1996) Parametric trends analysis of the critical heat flux based on artificial neural networks. Nucl Eng Des 163:29-49 (Pubitemid 126369912)
    • (1996) Nuclear Engineering and Design , vol.163 , Issue.1-2 , pp. 29-49
    • Moon, S.K.1    Baek, W.-P.2    Chang, S.H.3
  • 8
    • 0001022365 scopus 로고    scopus 로고
    • Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux
    • Mazzola A (1997) Integrating artificial neural networks and empirical correlations for the prediction of water subcooled critical heat flux. Rev Gen Therm 36:799-806 (Pubitemid 127818611)
    • (1997) Revue Generale de Thermique , vol.36 , Issue.11 , pp. 799-806
    • Mazzola, A.1
  • 9
    • 0036577756 scopus 로고    scopus 로고
    • Application of an artificial neural network in reactor thermohydraulic problem: Prediction of critical heat flux
    • Su G, Fukuda K, Jia D, Morita K (2002) Application of an artificial neural network in reactor thermo hydraulic problem: prediction of critical heat flux. Nucl Sci Technol 39:564-571 (Pubitemid 34741215)
    • (2002) Journal of Nuclear Science and Technology , vol.39 , Issue.5 , pp. 564-571
    • Su, G.1    Fukuda, K.2    Jia, D.3    Morita, K.4
  • 10
    • 0037333125 scopus 로고    scopus 로고
    • Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions. Applications of artificial neural network
    • Su G, Morita K, Fukuda K, Pidduck M, Dounan J, Miettinen J (2003) Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions. Applications of artificial neural network. Nucl Eng Des 220:17-35
    • (2003) Nucl Eng des , vol.220 , pp. 17-35
    • Su, G.1    Morita, K.2    Fukuda, K.3    Pidduck, M.4    Dounan, J.5    Miettinen, J.6
  • 12
    • 67349216694 scopus 로고    scopus 로고
    • Hybrid high order neural networks
    • Tsai HC (2009) Hybrid high order neural networks. Int J Soft Comput 9:874-881
    • (2009) Int J Soft Comput , vol.9 , pp. 874-881
    • Tsai, H.C.1
  • 13
    • 84900275413 scopus 로고    scopus 로고
    • Application of higher-order neural networks to financial time series prediction
    • Kamruzzaman JB (ed.)
    • Fulcher J, Zhang M, Shuxiang Xu (2006) Application of higher-order neural networks to financial time series prediction. In: Kamruzzaman JB (ed.) Artificial neural networks in finance and manufacturing, pp 80-108
    • (2006) Artificial Neural Networks in Finance and Manufacturing , pp. 80-108
    • Fulcher, J.1    Zhang, M.2    Xu, S.3
  • 14
    • 0036129962 scopus 로고    scopus 로고
    • Neuron-adaptive higher order neural-network models for automated financial data modeling
    • DOI 10.1109/72.977302, PII S1045922702003612
    • Zhang M, Xu S, Fulcher J (2002) Neuron-adaptive higher order neural-network models for automated financial data modeling. IEEE T neural netw 13:188-204 (Pubitemid 34236846)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 188-204
    • Zhang, M.1    Xu, S.2    Fulcher, J.3
  • 15
    • 33847327937 scopus 로고    scopus 로고
    • Handling of incomplete data sets using ICA and SOM in data mining
    • Peng H, Zhu S (2007) Handling of incomplete data sets using ICA and SOM in data mining. Neural Comput Appl 16:167-172
    • (2007) Neural Comput Appl , vol.16 , pp. 167-172
    • Peng, H.1    Zhu, S.2
  • 16
    • 0141904587 scopus 로고    scopus 로고
    • Application of self-organising maps for data mining with incomplete data sets
    • Wang SH (2003) Application of self-organising maps for data mining with incomplete data sets. Neural Comput Appl 12:42-48
    • (2003) Neural Comput Appl , vol.12 , pp. 42-48
    • Wang, S.H.1
  • 19
    • 84901517794 scopus 로고    scopus 로고
    • Artificial higher order neural networks for economics and business
    • Hershey
    • Zhang M (2008) Artificial higher order neural networks for economics and business. IGI Global, Hershey
    • (2008) IGI Global
    • Zhang, M.1
  • 20
  • 21
    • 15944408017 scopus 로고    scopus 로고
    • Modified high-order neural network for invariant pattern recognition
    • DOI 10.1016/j.patrec.2004.09.029, PII S0167865504002806
    • Artyomov E, Yadid-Pecht O (2005) Modified high-order neural network for invariant pattern recognition. Pattern Recognit Lett 26:843-851 (Pubitemid 40430503)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.6 , pp. 843-851
    • Artyomov, E.1    Yadid-Pecht, O.2
  • 22
    • 1842430911 scopus 로고    scopus 로고
    • An adaptive high-order neural tree for pattern recognition
    • Foresti GL, Dolso T (2004) An adaptive high-order neural tree for pattern recognition. IEEE Trans Syst Man Cybern B Cybern 34(2):988-996
    • (2004) IEEE Trans Syst Man Cybern B Cybern , vol.34 , Issue.2 , pp. 988-996
    • Foresti, G.L.1    Dolso, T.2
  • 23
    • 0742272570 scopus 로고    scopus 로고
    • High-order neural network structure selection for function approximation applications using genetic algorithms
    • Rovithakis GA, Maniadakis M, Zervakis M (2004) High-order neural network structure selection for function approximation applications using genetic algorithms. IEEE Trans Syst Man Cybern B Cybern 34:150-158
    • (2004) IEEE Trans Syst Man Cybern B Cybern , vol.34 , pp. 150-158
    • Rovithakis, G.A.1    Maniadakis, M.2    Zervakis, M.3
  • 24
    • 0029488423 scopus 로고
    • Qualitative analysis of the BP composed of product units and summing units
    • Wang JH, Lin JH (1995) Qualitative analysis of the BP composed of product units and summing units. IEEE Syst Man Cybern 1:35-39
    • (1995) IEEE Syst Man Cybern , vol.1 , pp. 35-39
    • Wang, J.H.1    Lin, J.H.2
  • 25
    • 38049062686 scopus 로고    scopus 로고
    • Dynamic ridge polynomial neural networks in exchange rates time series forecasting
    • Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B (eds)
    • Ghazali R, Hussain AJ, Al-jumeily D, Merabti M (2007) Dynamic ridge polynomial neural networks in exchange rates time series forecasting. In: Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B (eds) Spring Comp Sci, pp 123-132
    • (2007) Spring Comp Sci , pp. 123-132
    • Ghazali, R.1    Hussain, A.J.2    Al-Jumeily, D.3    Merabti, M.4
  • 26
    • 84858645944 scopus 로고    scopus 로고
    • A novel recurrent polynomial neural network for financial time series prediction
    • Zhang M (ed.)
    • Hussain A, Liatsis P (2008) A novel recurrent polynomial neural network for financial time series prediction. In: Zhang M (ed) Higher Order Neural Networks for Economics and Business, pp 190-211
    • (2008) Higher Order Neural Networks for Economics and Business , pp. 190-211
    • Hussain, A.1    Liatsis, P.2
  • 28
    • 77956619561 scopus 로고    scopus 로고
    • A hybrid higher order neural classifier for handling classification problems
    • doi:10.1016/j.eswa.2010.06.077
    • Fallahnezhad M, Moradi MH, Zaferanlouei S (2010) A hybrid higher order neural classifier for handling classification problems. Expert systems with applications. doi:10.1016/j.eswa.2010.06.077
    • (2010) Expert Systems with Applications
    • Fallahnezhad, M.1    Moradi, M.H.2    Zaferanlouei, S.3
  • 29
    • 0026375443 scopus 로고
    • The pi-sigma Networks: An efficient higher-order neural network for pattern classification and function approximation
    • Shin Y, Ghosh J (1991) The pi-sigma Networks: An efficient higher-order neural network for pattern classification and function approximation. Proc Int Jt Conf Neural Netw 1:13-18
    • (1991) Proc Int Jt Conf Neural Netw , vol.1 , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 32
    • 0021500272 scopus 로고
    • Improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes
    • Katto Y, Ohno H (1984) An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes. Int J Heat Mass Transf 27: 1641-1648 (Pubitemid 14647546)
    • (1984) International Journal of Heat and Mass Transfer , vol.27 , Issue.9 , pp. 1641-1648
    • Katto, Y.1    Ohno, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.