메뉴 건너뛰기




Volumn 2, Issue , 2011, Pages 14-19

Extending k-means-based algorithms for evolving data streams with variable number of clusters

Author keywords

Clustering; Data Stream; Online Clustering

Indexed keywords

ALGORITHMIC FRAMEWORK; CLUSTERING; CLUSTERING DATA; COMPUTATIONALLY EFFICIENT; DATA PARTITION; DATA STREAM; K-MEANS; NUMBER OF CLUSTERS; ONLINE-CLUSTERING; REAL WORLD DATA; STATE-OF-THE-ART ALGORITHMS; STATISTICAL SIGNIFICANCE; VARIABLE NUMBER OF CLUSTERS;

EID: 84857808949     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2011.67     Document Type: Conference Paper
Times cited : (24)

References (23)
  • 3
    • 79952370242 scopus 로고    scopus 로고
    • Learning in dynamic environments: Application to the identification of hybrid dynamic systems
    • M. S. Mouchawe, "Learning in dynamic environments: Application to the identification of hybrid dynamic systems," in Proc. of the ICMLA'10, 2010, pp. 555-560.
    • Proc. of the ICMLA'10, 2010 , pp. 555-560
    • Mouchawe, M.S.1
  • 4
    • 84857820430 scopus 로고    scopus 로고
    • Identifying static and dynamic prediction models for nox emissions with evolving fuzzy systems
    • vol. In press
    • E. Lughofer, V. Macian, C. Guardiola, and E. Klement, "Identifying static and dynamic prediction models for nox emissions with evolving fuzzy systems," Applied Soft Computing, vol. In press, 2010.
    • (2010) Applied Soft Computing
    • Lughofer, E.1    Macian, V.2    Guardiola, C.3    Klement, E.4
  • 5
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for projected clustering of high dimensional data streams," in Proc. of the VLDB, vol. 30, 2004, pp. 852-863.
    • (2004) Proc. of the VLDB , vol.30 , pp. 852-863
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 7
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 Years beyond k-means
    • A. K. Jain, "Data clustering: 50 years beyond k-means," Pattern Recognition Letters, vol. 31, pp. 651-666, 2009.
    • (2009) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 13
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An Efficient Data Clustering Method for Very Large Databases
    • T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: An Efficient Data Clustering Method for Very Large Databases," in Proc. of the SIGMOD'96, 1996, pp. 103-114.
    • Proc. of the SIGMOD'96, 1996 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 17
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • N. R. Pal and J. C. Bezdek, "On cluster validity for the fuzzy c-means model," IEEE Transactions on Fuzzy Systems, vol. 3, pp. 370-379, 1995.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 22
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets,"Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.