메뉴 건너뛰기




Volumn 80, Issue 4, 2012, Pages 1003-1015

How do thermophilic proteins resist aggregation?

Author keywords

Aggregation; Biotherapeutics; Mesophiles; Proteins; Thermophiles

Indexed keywords

AMYLOID; ARGININE; ASPARAGINE; GLUTAMINE; HEXAPEPTIDE; LYSINE; MONOMER; PROLINE; PROTEIN; TETRAPEPTIDE; THERMOPHILIC PROTEIN; UNCLASSIFIED DRUG;

EID: 84857793371     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.24002     Document Type: Article
Times cited : (20)

References (74)
  • 3
    • 6344265180 scopus 로고    scopus 로고
    • Experiment-guided thermodynamic simulations on reversible two state proteins: implications for protein thermostability
    • Kumar S, Nussinov R. Experiment-guided thermodynamic simulations on reversible two state proteins: implications for protein thermostability. Biophys Chem 2004; 111: 235-246.
    • (2004) Biophys Chem , vol.111 , pp. 235-246
    • Kumar, S.1    Nussinov, R.2
  • 4
    • 0032715527 scopus 로고    scopus 로고
    • Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins
    • Gromiha MM, Oobatake M, Sarai A. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem 1999; 82: 51-67.
    • (1999) Biophys Chem , vol.82 , pp. 51-67
    • Gromiha, M.M.1    Oobatake, M.2    Sarai, A.3
  • 5
    • 38949093003 scopus 로고    scopus 로고
    • Palaeotemperature trend for Precambrian life inferred from resurrected proteins
    • Gaucher EA, Govindarajan S, Ganesh OK. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 2008; 451: 704-707.
    • (2008) Nature , vol.451 , pp. 704-707
    • Gaucher, E.A.1    Govindarajan, S.2    Ganesh, O.K.3
  • 6
    • 0031614960 scopus 로고    scopus 로고
    • Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water
    • Ladenstein R, Antranikian G. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv Biochem Eng Biotechnol 1998; 61: 37-85.
    • (1998) Adv Biochem Eng Biotechnol , vol.61 , pp. 37-85
    • Ladenstein, R.1    Antranikian, G.2
  • 7
    • 0032438190 scopus 로고    scopus 로고
    • The stability of proteins in extreme environments
    • Jaenicke R, Bohm G. The stability of proteins in extreme environments. Curr Opin Struct Biol 1998; 8: 738-648.
    • (1998) Curr Opin Struct Biol , vol.8 , pp. 738-648
    • Jaenicke, R.1    Bohm, G.2
  • 8
    • 0034855858 scopus 로고    scopus 로고
    • How do thermophilic proteins deal with heat?
    • Kumar S, Nussinov R. How do thermophilic proteins deal with heat? Cell Mol Life Sci 2001; 58: 1216-1233.
    • (2001) Cell Mol Life Sci , vol.58 , pp. 1216-1233
    • Kumar, S.1    Nussinov, R.2
  • 9
    • 0042433116 scopus 로고    scopus 로고
    • New understandings of thermostable and peizostable enzymes
    • Yano JK, Poulos TL. New understandings of thermostable and peizostable enzymes. Curr Opin Biotechnol 2003; 14: 360-365.
    • (2003) Curr Opin Biotechnol , vol.14 , pp. 360-365
    • Yano, J.K.1    Poulos, T.L.2
  • 10
    • 77956912541 scopus 로고    scopus 로고
    • Protein stability and enzyme activity at extreme biological temperatures
    • Feller G. Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 2010; 22: 323101.
    • (2010) J Phys Condens Matter , vol.22 , pp. 323101
    • Feller, G.1
  • 11
    • 79952199938 scopus 로고    scopus 로고
    • Engineering protein stability
    • O'Fágáin C. Engineering protein stability. Methods Mol Biol 2011; 681: 103-136.
    • (2011) Methods Mol Biol , vol.681 , pp. 103-136
    • O'Fágáin, C.1
  • 13
    • 0034017055 scopus 로고    scopus 로고
    • Factors enhancing protein thermostability
    • Kumar S, Tsai CJ, Nussinov R. Factors enhancing protein thermostability. Protein Eng 2000; 13: 179-191.
    • (2000) Protein Eng , vol.13 , pp. 179-191
    • Kumar, S.1    Tsai, C.J.2    Nussinov, R.3
  • 14
    • 0035960641 scopus 로고    scopus 로고
    • Thermodynamic differences among homologous thermophilic and mesophilic proteins
    • Kumar S, Tsai CJ, Nussinov R. Thermodynamic differences among homologous thermophilic and mesophilic proteins. Biochemistry 2001; 40: 14152-14165.
    • (2001) Biochemistry , vol.40 , pp. 14152-14165
    • Kumar, S.1    Tsai, C.J.2    Nussinov, R.3
  • 15
    • 0035876847 scopus 로고    scopus 로고
    • Important inter-residue contacts for enhancing the thermal stability of thermophilic proteins
    • Gromiha MM. Important inter-residue contacts for enhancing the thermal stability of thermophilic proteins. Biophys Chem 2001; 91: 71-77.
    • (2001) Biophys Chem , vol.91 , pp. 71-77
    • Gromiha, M.M.1
  • 16
    • 0036425552 scopus 로고    scopus 로고
    • Role of cation-pi interactions to the stability of thermophilic proteins
    • Gromiha MM, Thomas S, Santhosh C. Role of cation-pi interactions to the stability of thermophilic proteins. Prep Biochem Biotechnol 2002; 32: 355-362.
    • (2002) Prep Biochem Biotechnol , vol.32 , pp. 355-362
    • Gromiha, M.M.1    Thomas, S.2    Santhosh, C.3
  • 17
    • 8444244797 scopus 로고    scopus 로고
    • Role of weak interactions in thermal stability of proteins
    • Ibrahim BS, Pattabhi V. Role of weak interactions in thermal stability of proteins. Biochem Biophys Res Commun 2004; 325: 1082-1089.
    • (2004) Biochem Biophys Res Commun , vol.325 , pp. 1082-1089
    • Ibrahim, B.S.1    Pattabhi, V.2
  • 18
    • 0033603392 scopus 로고    scopus 로고
    • Electrostatic contributions to the stability of hyperthermophilic proteins
    • Xiao L, Honig B. Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol 1999; 289: 1435-1444.
    • (1999) J Mol Biol , vol.289 , pp. 1435-1444
    • Xiao, L.1    Honig, B.2
  • 19
    • 4444362321 scopus 로고    scopus 로고
    • An electrostatic basis for the stability of thermophilic proteins
    • Dominy BN, Minoux H, Brooks CLIII., An electrostatic basis for the stability of thermophilic proteins. Proteins 2004; 57: 128-141.
    • (2004) Proteins , vol.57 , pp. 128-141
    • Dominy, B.N.1    Minoux, H.2    Brooks III, C.L.3
  • 20
    • 16244421734 scopus 로고    scopus 로고
    • Importance of mainchain hydrophobic free energy to the stability of thermophilic proteins
    • Saraboji K, Gromiha MM, Ponnuswamy MN. Importance of mainchain hydrophobic free energy to the stability of thermophilic proteins. Int J Biol Macromol 2005; 35: 211-220.
    • (2005) Int J Biol Macromol , vol.35 , pp. 211-220
    • Saraboji, K.1    Gromiha, M.M.2    Ponnuswamy, M.N.3
  • 21
  • 22
    • 75149155238 scopus 로고    scopus 로고
    • Comparative analysis of thermophilic and mesophilic proteins using Protein Energy Networks
    • Vijayabaskar MS, Vishveshwara S. Comparative analysis of thermophilic and mesophilic proteins using Protein Energy Networks. BMC Bioinform 2010; 11(Suppl. 1): S49.
    • (2010) BMC Bioinform , vol.11 , Issue.SUPPL. 1
    • Vijayabaskar, M.S.1    Vishveshwara, S.2
  • 23
    • 34548730241 scopus 로고    scopus 로고
    • Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms
    • Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 2007; 23: 2231-2238.
    • (2007) Bioinformatics , vol.23 , pp. 2231-2238
    • Glyakina, A.V.1    Garbuzynskiy, S.O.2    Lobanov, M.Y.3    Galzitskaya, O.V.4
  • 24
    • 62949116944 scopus 로고    scopus 로고
    • Subunit interfaces of oligomeric hyperthermophilic enzymes display enhanced compactness
    • Baldasseroni F, Pascarella S. Subunit interfaces of oligomeric hyperthermophilic enzymes display enhanced compactness. Int J Biol Macromol 2009; 44: 353-360.
    • (2009) Int J Biol Macromol , vol.44 , pp. 353-360
    • Baldasseroni, F.1    Pascarella, S.2
  • 25
    • 80052449370 scopus 로고    scopus 로고
    • How do thermophilic proteins and proteomes withstand high temperature?
    • Sawle L, Ghosh K. How do thermophilic proteins and proteomes withstand high temperature? Biophys J 2011; 101: 217-227.
    • (2011) Biophys J , vol.101 , pp. 217-227
    • Sawle, L.1    Ghosh, K.2
  • 26
    • 79959612799 scopus 로고    scopus 로고
    • Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding
    • Chan CH, Yu TH, Wong KB. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One 2011; 6: e21624.
    • (2011) PLoS One , vol.6
    • Chan, C.H.1    Yu, T.H.2    Wong, K.B.3
  • 29
    • 79953088876 scopus 로고    scopus 로고
    • Knitting and snipping: chaperones in β-helix folding
    • Schulz EC, Ficner R. Knitting and snipping: chaperones in β-helix folding. Curr Opin Struct Biol 2011; 21: 232-239.
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 232-239
    • Schulz, E.C.1    Ficner, R.2
  • 31
    • 77955466435 scopus 로고    scopus 로고
    • Identification and impact of aggregation prone regions in proteins and therapeutic mAbs
    • Wang W, Roberts CJ, editors. Hoboken, NJ: Wiley;
    • Kumar S, Wang X, Singh SK. Identification and impact of aggregation prone regions in proteins and therapeutic mAbs. In: Wang W, Roberts CJ, editors. Aggregation of therapeutic proteins. Hoboken, NJ: Wiley; 2010. pp 103-118.
    • (2010) Aggregation of therapeutic proteins , pp. 103-118
    • Kumar, S.1    Wang, X.2    Singh, S.K.3
  • 32
    • 80054949314 scopus 로고    scopus 로고
    • Aggregation in protein-based biotherapeutics: computational studies and tools to identify aggregation prone regions
    • Agrawal NJ, Kumar S, Wang X, Helk B, Singh SK, Trout BL. Aggregation in protein-based biotherapeutics: computational studies and tools to identify aggregation prone regions. J Pharm Sci 2011; 100: 5081-5095.
    • (2011) J Pharm Sci , vol.100 , pp. 5081-5095
    • Agrawal, N.J.1    Kumar, S.2    Wang, X.3    Helk, B.4    Singh, S.K.5    Trout, B.L.6
  • 33
    • 0345827608 scopus 로고    scopus 로고
    • Sequence determinants of amyloid fibril formation
    • Lopez de la Paz M, Serrano L. Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA 2004; 101: 87-92.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 87-92
    • Lopez de la Paz, M.1    Serrano, L.2
  • 37
    • 34548756136 scopus 로고    scopus 로고
    • Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential
    • Zhang Z, Chen H, Lai L. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 2007; 23: 2218-2225.
    • (2007) Bioinformatics , vol.23 , pp. 2218-2225
    • Zhang, Z.1    Chen, H.2    Lai, L.3
  • 40
    • 33748689799 scopus 로고    scopus 로고
    • Simulations as analytical tools to understand protein aggregation and predict amyloid conformation
    • Ma B, Nussinov R. Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Curr Opin Chem Biol 2006; 10: 445-452.
    • (2006) Curr Opin Chem Biol , vol.10 , pp. 445-452
    • Ma, B.1    Nussinov, R.2
  • 41
    • 35748961997 scopus 로고    scopus 로고
    • Molecular basis of osmolyte effects on protein and metabolites
    • Rösgen J. Molecular basis of osmolyte effects on protein and metabolites. Methods Enzymol 2007; 428: 459-486.
    • (2007) Methods Enzymol , vol.428 , pp. 459-486
    • Rösgen, J.1
  • 42
    • 33947730947 scopus 로고    scopus 로고
    • An analysis of the molecular origin of osmolyte-dependent protein stability
    • Rösgen J, Pettitt BM, Bolen DW. An analysis of the molecular origin of osmolyte-dependent protein stability. Protein Sci 2007; 16: 733-743.
    • (2007) Protein Sci , vol.16 , pp. 733-743
    • Rösgen, J.1    Pettitt, B.M.2    Bolen, D.W.3
  • 43
    • 57049105810 scopus 로고    scopus 로고
    • Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, amino acids, and peptides
    • Auton M, Bolen DW, Rösgen J. Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, amino acids, and peptides. Proteins 2008; 73: 802-813.
    • (2008) Proteins , vol.73 , pp. 802-813
    • Auton, M.1    Bolen, D.W.2    Rösgen, J.3
  • 44
    • 84857783416 scopus 로고    scopus 로고
    • Computational methods to predict of aggregation in therapeutic proteins. In: Voynov V, Caravella J, editors. Therapeutic proteins: methods & protocols
    • 2nd ed. USA: Humana Press, in press.
    • Buck PM, Kumar S, Wang X, Agrawal NJ, Trout BL, Singh SK. Computational methods to predict of aggregation in therapeutic proteins. In: Voynov V, Caravella J, editors. Therapeutic proteins: methods & protocols, 2nd ed. Methods in molecular biology. USA: Humana Press, in press.
    • Methods in molecular biology
    • Buck, P.M.1    Kumar, S.2    Wang, X.3    Agrawal, N.J.4    Trout, B.L.5    Singh, S.K.6
  • 45
    • 31944435727 scopus 로고    scopus 로고
    • The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions
    • Colacino S, Tiana G, Broglia RA, Colombo G. The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions. Proteins 2006; 62: 698-707.
    • (2006) Proteins , vol.62 , pp. 698-707
    • Colacino, S.1    Tiana, G.2    Broglia, R.A.3    Colombo, G.4
  • 46
    • 79954531753 scopus 로고    scopus 로고
    • Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates
    • Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J Pharm Sci 2011; 100: 2087-2103.
    • (2011) J Pharm Sci , vol.100 , pp. 2087-2103
    • Brummitt, R.K.1    Nesta, D.P.2    Chang, L.3    Chase, S.F.4    Laue, T.M.5    Roberts, C.J.6
  • 47
    • 51649099535 scopus 로고    scopus 로고
    • Water-soluble tripeptide Abeta (9-11) forms amyloid-like fibrils and exhibits neurotoxicity
    • Naskar J, Drew MG, Deb I, Das S, Banerjee A. Water-soluble tripeptide Abeta (9-11) forms amyloid-like fibrils and exhibits neurotoxicity. Org Lett 2008; 10: 2625-2628.
    • (2008) Org Lett , vol.10 , pp. 2625-2628
    • Naskar, J.1    Drew, M.G.2    Deb, I.3    Das, S.4    Banerjee, A.5
  • 48
    • 0037044732 scopus 로고    scopus 로고
    • Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides
    • Tjernberg L, Hosia W, Bark N, Thyberg J, Johansson J. Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides. J Biol Chem 2002; 277: 43243-43246.
    • (2002) J Biol Chem , vol.277 , pp. 43243-43246
    • Tjernberg, L.1    Hosia, W.2    Bark, N.3    Thyberg, J.4    Johansson, J.5
  • 49
    • 33749031257 scopus 로고    scopus 로고
    • Extremolytes: natural compounds from extremophiles for versatile applications
    • Lentzen G, Schwarz T. Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 2006; 72: 623-634.
    • (2006) Appl Microbiol Biotechnol , vol.72 , pp. 623-634
    • Lentzen, G.1    Schwarz, T.2
  • 50
    • 5044235541 scopus 로고    scopus 로고
    • Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins
    • Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 2004; 22: 1302-1306.
    • (2004) Nat Biotechnol , vol.22 , pp. 1302-1306
    • Fernandez-Escamilla, A.-M.1    Rousseau, F.2    Schymkowitz, J.3    Serrano, L.4
  • 51
    • 25844466604 scopus 로고    scopus 로고
    • Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences
    • Tartaglia GG, Cavalli A, Pellarin R, Caflisch A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 2005; 14: 2723-2734.
    • (2005) Protein Sci , vol.14 , pp. 2723-2734
    • Tartaglia, G.G.1    Cavalli, A.2    Pellarin, R.3    Caflisch, A.4
  • 52
    • 77955467854 scopus 로고    scopus 로고
    • Potential aggregation-prone regions in complementarity-determining regions of antibodies and their contribution towards antigen recognition: a computational analysis
    • Wang X, Singh SK, Kumar S. Potential aggregation-prone regions in complementarity-determining regions of antibodies and their contribution towards antigen recognition: a computational analysis. Pharm Res 2010; 27: 1512-1529.
    • (2010) Pharm Res , vol.27 , pp. 1512-1529
    • Wang, X.1    Singh, S.K.2    Kumar, S.3
  • 53
    • 0032101291 scopus 로고    scopus 로고
    • Dissecting alpha-helices: position-specific analysis of alpha-helices in globular proteins
    • Kumar S, Bansal M. Dissecting alpha-helices: position-specific analysis of alpha-helices in globular proteins. Proteins 1998; 31: 460-476.
    • (1998) Proteins , vol.31 , pp. 460-476
    • Kumar, S.1    Bansal, M.2
  • 54
    • 0015217634 scopus 로고
    • The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale
    • Nozaki Y, Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem 1971; 246: 2211-2217.
    • (1971) J Biol Chem , vol.246 , pp. 2211-2217
    • Nozaki, Y.1    Tanford, C.2
  • 55
    • 0016708277 scopus 로고
    • Amino acid properties and side-chain orientation in proteins: a cross correlation approach
    • Jones DD. Amino acid properties and side-chain orientation in proteins: a cross correlation approach. J Theor Biol 1975; 50: 167-183.
    • (1975) J Theor Biol , vol.50 , pp. 167-183
    • Jones, D.D.1
  • 56
    • 0018077908 scopus 로고
    • Hydrophobic character of amino acid residues in globular proteins
    • Manavalan P, Ponnuswamy PK. Hydrophobic character of amino acid residues in globular proteins. Nature 1978; 275: 673-674.
    • (1978) Nature , vol.275 , pp. 673-674
    • Manavalan, P.1    Ponnuswamy, P.K.2
  • 57
    • 0017588168 scopus 로고
    • A study of the preferred environment of amino acid residues in globular proteins
    • Manavalan P, Ponnuswamy PK. A study of the preferred environment of amino acid residues in globular proteins. Arch Biochem Biophys 1977; 184: 476-487.
    • (1977) Arch Biochem Biophys , vol.184 , pp. 476-487
    • Manavalan, P.1    Ponnuswamy, P.K.2
  • 58
    • 0037072946 scopus 로고    scopus 로고
    • Effect of amino acid on forming residue-residue contacts in proteins
    • Jiang Z, Zhang L, Chen J, Xia A, Zhao D. Effect of amino acid on forming residue-residue contacts in proteins. Polymer 2002; 43: 6037-6047.
    • (2002) Polymer , vol.43 , pp. 6037-6047
    • Jiang, Z.1    Zhang, L.2    Chen, J.3    Xia, A.4    Zhao, D.5
  • 59
    • 1842464687 scopus 로고    scopus 로고
    • Inter-residue interactions in protein folding and stability
    • Gromiha MM, Selvaraj S. Inter-residue interactions in protein folding and stability. Prog Biophys Mol Biol 2004; 86: 235-277.
    • (2004) Prog Biophys Mol Biol , vol.86 , pp. 235-277
    • Gromiha, M.M.1    Selvaraj, S.2
  • 60
    • 0033521194 scopus 로고    scopus 로고
    • First principles prediction of protein folding rates
    • Debe DA, Goddard WA. First principles prediction of protein folding rates. J Mol Biol 1999; 294: 619-625.
    • (1999) J Mol Biol , vol.294 , pp. 619-625
    • Debe, D.A.1    Goddard, W.A.2
  • 61
    • 0035967862 scopus 로고    scopus 로고
    • Comparison between long-range interactions and contact order in determining the folding rates of two-state proteins: application of long-range order to folding rate prediction
    • Gromiha MM, Selvaraj S. Comparison between long-range interactions and contact order in determining the folding rates of two-state proteins: application of long-range order to folding rate prediction. J Mol Biol 2001; 310: 27-32.
    • (2001) J Mol Biol , vol.310 , pp. 27-32
    • Gromiha, M.M.1    Selvaraj, S.2
  • 62
    • 37749052245 scopus 로고    scopus 로고
    • Prediction of protein stability upon point mutations
    • Gromiha MM. Prediction of protein stability upon point mutations. Biochem Soc Trans 2007; 35: 1569-1573.
    • (2007) Biochem Soc Trans , vol.35 , pp. 1569-1573
    • Gromiha, M.M.1
  • 63
    • 77958510302 scopus 로고    scopus 로고
    • Influence of long-range contacts and surrounding residues on the transition state structures of proteins
    • Gromiha MM. Influence of long-range contacts and surrounding residues on the transition state structures of proteins. Anal Biochem 2011; 408: 32-36.
    • (2011) Anal Biochem , vol.408 , pp. 32-36
    • Gromiha, M.M.1
  • 64
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 66
    • 0033532946 scopus 로고    scopus 로고
    • Free-energy maps of base-amino acid interactions for DNA-protein recognition
    • Pichierri F, Aida M, Gromiha MM, Sarai A. Free-energy maps of base-amino acid interactions for DNA-protein recognition. J Am Chem Soc 1999; 121: 6152-6157.
    • (1999) J Am Chem Soc , vol.121 , pp. 6152-6157
    • Pichierri, F.1    Aida, M.2    Gromiha, M.M.3    Sarai, A.4
  • 67
    • 72949113228 scopus 로고    scopus 로고
    • Energy based approach for understanding the recognition mechanism in protein-protein complexes
    • Gromiha MM, Yokota K, Fukui K. Energy based approach for understanding the recognition mechanism in protein-protein complexes. Mol Biosyst 2009; 12: 1779-1786.
    • (2009) Mol Biosyst , vol.12 , pp. 1779-1786
    • Gromiha, M.M.1    Yokota, K.2    Fukui, K.3
  • 69
    • 3342902033 scopus 로고    scopus 로고
    • Modulation of S6 fibrillation by unfolding rates and gatekeeper residues
    • Pedersen JS, Christensen G, Otzen DE. Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. J Mol Biol 2004; 341: 575-588.
    • (2004) J Mol Biol , vol.341 , pp. 575-588
    • Pedersen, J.S.1    Christensen, G.2    Otzen, D.E.3
  • 70
    • 2542445427 scopus 로고    scopus 로고
    • ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information
    • Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 2003; 19: 163-164.
    • (2003) Bioinformatics , vol.19 , pp. 163-164
    • Glaser, F.1    Pupko, T.2    Paz, I.3    Bell, R.E.4    Bechor-Shental, D.5    Martz, E.6    Ben-Tal, N.7
  • 72
    • 32344448608 scopus 로고    scopus 로고
    • Protein aggregation and amyloidosis: confusion of the kinds?
    • Rousseau F, Schymkowitz J, Serrano L. Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol. 2006; 16: 118-126.
    • (2006) Curr Opin Struct Biol , vol.16 , pp. 118-126
    • Rousseau, F.1    Schymkowitz, J.2    Serrano, L.3
  • 74
    • 0039116206 scopus 로고    scopus 로고
    • Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey
    • Szilágyi A, Závodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 2000; 8: 493-504.
    • (2000) Structure , vol.8 , pp. 493-504
    • Szilágyi, A.1    Závodszky, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.