메뉴 건너뛰기




Volumn 35, Issue 3, 2012, Pages 156-163

Sensory axon regeneration: Rebuilding functional connections in the spinal cord

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN DERIVED NEUROTROPHIC FACTOR; CHONDROITIN SULFATE; NERVE GROWTH FACTOR; NEURITE PROMOTING FACTOR; NEUROTROPHIC FACTOR; NEUROTROPHIN 3; PROTEIN NOGO; PROTEOGLYCAN;

EID: 84857686109     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2011.10.006     Document Type: Review
Times cited : (56)

References (82)
  • 1
    • 33344463671 scopus 로고    scopus 로고
    • Experimental strategies to promote spinal cord regeneration: an integrative perspective
    • Schwab J.M., et al. Experimental strategies to promote spinal cord regeneration: an integrative perspective. Prog. Neurobiol. 2006, 78:91-116.
    • (2006) Prog. Neurobiol. , vol.78 , pp. 91-116
    • Schwab, J.M.1
  • 2
    • 35948980085 scopus 로고    scopus 로고
    • Spinal cord injury: time to move?
    • Rossignol S., et al. Spinal cord injury: time to move?. J. Neurosci. 2007, 27:11782-11792.
    • (2007) J. Neurosci. , vol.27 , pp. 11782-11792
    • Rossignol, S.1
  • 3
    • 42749096670 scopus 로고    scopus 로고
    • Axonal growth therapeutics: regeneration or sprouting or plasticity?
    • Cafferty W.B., et al. Axonal growth therapeutics: regeneration or sprouting or plasticity?. Trends Neurosci. 2008, 31:215-220.
    • (2008) Trends Neurosci. , vol.31 , pp. 215-220
    • Cafferty, W.B.1
  • 4
    • 58149512333 scopus 로고    scopus 로고
    • Spinal cord injury: plasticity, regeneration and the challenge of translational drug development
    • Blesch A., Tuszynski M.H. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci. 2009, 32:41-47.
    • (2009) Trends Neurosci. , vol.32 , pp. 41-47
    • Blesch, A.1    Tuszynski, M.H.2
  • 5
    • 0033867935 scopus 로고    scopus 로고
    • Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury
    • Basso D.M. Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury. Phys. Ther. 2000, 80:808-817.
    • (2000) Phys. Ther. , vol.80 , pp. 808-817
    • Basso, D.M.1
  • 6
    • 33645838373 scopus 로고    scopus 로고
    • Spinal cord injury rehabilitation: state of the science
    • Sipski M.L., Richards J.S. Spinal cord injury rehabilitation: state of the science. Am. J. Phys. Med. Rehabil. 2006, 85:310-342.
    • (2006) Am. J. Phys. Med. Rehabil. , vol.85 , pp. 310-342
    • Sipski, M.L.1    Richards, J.S.2
  • 7
    • 0019760388 scopus 로고
    • Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents
    • Aguayo A.J., et al. Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J. Exp. Biol. 1981, 95:231-240.
    • (1981) J. Exp. Biol. , vol.95 , pp. 231-240
    • Aguayo, A.J.1
  • 8
    • 0019856865 scopus 로고
    • Axonal elongation into peripheral nervous system 'bridges' after central nervous system injury in adult rats
    • David S., Aguayo A.J. Axonal elongation into peripheral nervous system 'bridges' after central nervous system injury in adult rats. Science 1981, 214:931-933.
    • (1981) Science , vol.214 , pp. 931-933
    • David, S.1    Aguayo, A.J.2
  • 9
    • 84873066315 scopus 로고
    • Degeneration and Regeneration of the Nervous System, translations by DeFelipe, J. and E.G. Jones, Oxford University Press, London
    • Ramón y Cajal, S. (1928) Degeneration and Regeneration of the Nervous System, translations by DeFelipe, J. and E.G. Jones, Oxford University Press, London.
    • (1928)
    • Ramón, Y.C.S.1
  • 10
    • 79952998839 scopus 로고    scopus 로고
    • In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border
    • Di Maio A., et al. In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. J. Neurosci. 2011, 31:4569-4582.
    • (2011) J. Neurosci. , vol.31 , pp. 4569-4582
    • Di Maio, A.1
  • 11
    • 0022366236 scopus 로고
    • Regenerating axons form nerve terminals at astrocytes
    • Carlstedt T. Regenerating axons form nerve terminals at astrocytes. Brain Res. 1985, 347:188-191.
    • (1985) Brain Res. , vol.347 , pp. 188-191
    • Carlstedt, T.1
  • 12
    • 0023647298 scopus 로고
    • Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway
    • Liuzzi F.J., Lasek R.J. Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 1987, 237:642-645.
    • (1987) Science , vol.237 , pp. 642-645
    • Liuzzi, F.J.1    Lasek, R.J.2
  • 13
    • 0020853455 scopus 로고
    • Development of embryonic spinal cord transplants in the rat
    • Reier P.J., et al. Development of embryonic spinal cord transplants in the rat. Brain Res. 1983, 312:201-219.
    • (1983) Brain Res. , vol.312 , pp. 201-219
    • Reier, P.J.1
  • 14
    • 0027970246 scopus 로고
    • Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model
    • George R., Griffin J.W. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. Exp. Neurol. 1994, 129:225-236.
    • (1994) Exp. Neurol. , vol.129 , pp. 225-236
    • George, R.1    Griffin, J.W.2
  • 15
    • 0028847204 scopus 로고
    • Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons
    • Avellino A.M., et al. Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons. Exp. Neurol. 1995, 136:183-198.
    • (1995) Exp. Neurol. , vol.136 , pp. 183-198
    • Avellino, A.M.1
  • 16
    • 0034014321 scopus 로고    scopus 로고
    • Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat
    • Liu L., et al. Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp. Brain Res. 2000, 131:64-73.
    • (2000) Exp. Brain Res. , vol.131 , pp. 64-73
    • Liu, L.1
  • 17
    • 0031778574 scopus 로고    scopus 로고
    • Central neuron-glial and glial-glial interactions following axon injury
    • Aldskogius H., Kozlova E.N. Central neuron-glial and glial-glial interactions following axon injury. Prog. Neurobiol. 1998, 55:1-26.
    • (1998) Prog. Neurobiol. , vol.55 , pp. 1-26
    • Aldskogius, H.1    Kozlova, E.N.2
  • 18
    • 77957682242 scopus 로고    scopus 로고
    • Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC
    • Filous A.R., et al. Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC. Dev Neurobiol 2010, 70:826-841.
    • (2010) Dev Neurobiol , vol.70 , pp. 826-841
    • Filous, A.R.1
  • 19
    • 77953653088 scopus 로고    scopus 로고
    • Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice
    • Lee J.K., et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 2010, 66:663-670.
    • (2010) Neuron , vol.66 , pp. 663-670
    • Lee, J.K.1
  • 20
    • 52649100458 scopus 로고    scopus 로고
    • Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems
    • Giger R.J., et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor. Neurol. Neurosci. 2008, 26:97-115.
    • (2008) Restor. Neurol. Neurosci. , vol.26 , pp. 97-115
    • Giger, R.J.1
  • 21
    • 55849086190 scopus 로고    scopus 로고
    • PirB is a functional receptor for myelin inhibitors of axonal regeneration
    • Atwal J.K., et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 2008, 322:967-970.
    • (2008) Science , vol.322 , pp. 967-970
    • Atwal, J.K.1
  • 22
    • 0141499228 scopus 로고    scopus 로고
    • Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS
    • Filbin M.T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 2003, 4:703-713.
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 703-713
    • Filbin, M.T.1
  • 23
    • 0023967246 scopus 로고
    • Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter
    • Caroni P., Schwab M.E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1988, 1:85-96.
    • (1988) Neuron , vol.1 , pp. 85-96
    • Caroni, P.1    Schwab, M.E.2
  • 24
    • 20844439022 scopus 로고    scopus 로고
    • Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury
    • Li S., et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J. Neurosci. 2004, 24:10511-10520.
    • (2004) J. Neurosci. , vol.24 , pp. 10511-10520
    • Li, S.1
  • 25
    • 23944444786 scopus 로고    scopus 로고
    • Effect of combined treatment with methylprednisolone and soluble Nogo-66 receptor after rat spinal cord injury
    • Ji B., et al. Effect of combined treatment with methylprednisolone and soluble Nogo-66 receptor after rat spinal cord injury. Eur. J. Neurosci. 2005, 22:587-594.
    • (2005) Eur. J. Neurosci. , vol.22 , pp. 587-594
    • Ji, B.1
  • 26
    • 18144393017 scopus 로고    scopus 로고
    • Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury
    • Li S., et al. Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury. Mol. Cell. Neurosci. 2005, 29:26-39.
    • (2005) Mol. Cell. Neurosci. , vol.29 , pp. 26-39
    • Li, S.1
  • 27
    • 33845285911 scopus 로고    scopus 로고
    • Delayed Nogo receptor therapy improves recovery from spinal cord contusion
    • Wang X., et al. Delayed Nogo receptor therapy improves recovery from spinal cord contusion. Ann. Neurol. 2006, 60:540-549.
    • (2006) Ann. Neurol. , vol.60 , pp. 540-549
    • Wang, X.1
  • 28
    • 66049163896 scopus 로고    scopus 로고
    • Blockade of Nogo receptor ligands promotes functional regeneration of sensory axons after dorsal root crush
    • Harvey P.A., et al. Blockade of Nogo receptor ligands promotes functional regeneration of sensory axons after dorsal root crush. J. Neurosci. 2009, 29:6285-6295.
    • (2009) J. Neurosci. , vol.29 , pp. 6285-6295
    • Harvey, P.A.1
  • 29
    • 77449118391 scopus 로고    scopus 로고
    • Soluble Nogo receptor down-regulates expression of neuronal Nogo-A to enhance axonal regeneration
    • Peng X., et al. Soluble Nogo receptor down-regulates expression of neuronal Nogo-A to enhance axonal regeneration. J. Biol. Chem. 2010, 285:2783-2795.
    • (2010) J. Biol. Chem. , vol.285 , pp. 2783-2795
    • Peng, X.1
  • 30
    • 0027407114 scopus 로고
    • Putative inhibitory extracellular matrix molecules at the dorsal root entry zone of the spinal cord during development and after root and sciatic nerve lesions
    • Pindzola R.R., et al. Putative inhibitory extracellular matrix molecules at the dorsal root entry zone of the spinal cord during development and after root and sciatic nerve lesions. Dev. Biol. 1993, 156:34-48.
    • (1993) Dev. Biol. , vol.156 , pp. 34-48
    • Pindzola, R.R.1
  • 31
    • 0035069358 scopus 로고    scopus 로고
    • Correlation between putative inhibitory molecules at the dorsal root entry zone and failure of dorsal root axonal regeneration
    • Zhang Y., et al. Correlation between putative inhibitory molecules at the dorsal root entry zone and failure of dorsal root axonal regeneration. Mol. Cell. Neurosci. 2001, 17:444-459.
    • (2001) Mol. Cell. Neurosci. , vol.17 , pp. 444-459
    • Zhang, Y.1
  • 32
    • 20444412658 scopus 로고    scopus 로고
    • Lesion-induced differential expression and cell association of Neurocan, Brevican, Versican V1 and V2 in the mouse dorsal root entry zone
    • Beggah A.T., et al. Lesion-induced differential expression and cell association of Neurocan, Brevican, Versican V1 and V2 in the mouse dorsal root entry zone. Neuroscience 2005, 133:749-762.
    • (2005) Neuroscience , vol.133 , pp. 749-762
    • Beggah, A.T.1
  • 33
    • 13244281758 scopus 로고    scopus 로고
    • The astrocytic barrier to axonal regeneration at the dorsal root entry zone is induced by rhizotomy
    • McPhail L.T., et al. The astrocytic barrier to axonal regeneration at the dorsal root entry zone is induced by rhizotomy. Eur. J. Neurosci. 2005, 21:267-270.
    • (2005) Eur. J. Neurosci. , vol.21 , pp. 267-270
    • McPhail, L.T.1
  • 34
    • 58149339636 scopus 로고    scopus 로고
    • Chondroitinase ABC-mediated plasticity of spinal sensory function
    • Cafferty W.B., et al. Chondroitinase ABC-mediated plasticity of spinal sensory function. J. Neurosci. 2008, 28:11998-12009.
    • (2008) J. Neurosci. , vol.28 , pp. 11998-12009
    • Cafferty, W.B.1
  • 35
    • 0031439210 scopus 로고    scopus 로고
    • Macrophage/microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor
    • Smith G.M., Hale J.H. Macrophage/microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor. J. Neurosci. 1997, 17:9624-9633.
    • (1997) J. Neurosci. , vol.17 , pp. 9624-9633
    • Smith, G.M.1    Hale, J.H.2
  • 36
    • 0037088910 scopus 로고    scopus 로고
    • Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells
    • Asher R.A., et al. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J. Neurosci. 2002, 22:2225-2236.
    • (2002) J. Neurosci. , vol.22 , pp. 2225-2236
    • Asher, R.A.1
  • 37
    • 30444433522 scopus 로고    scopus 로고
    • Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes
    • Smith G.M., Strunz C. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 2005, 52:209-218.
    • (2005) Glia , vol.52 , pp. 209-218
    • Smith, G.M.1    Strunz, C.2
  • 38
    • 66749187640 scopus 로고    scopus 로고
    • Netrin-1 signaling for sensory axons: Involvement in sensory axonal development and regeneration
    • Masuda T., et al. Netrin-1 signaling for sensory axons: Involvement in sensory axonal development and regeneration. Cell Adhes. Migr. 2009, 3:171-173.
    • (2009) Cell Adhes. Migr. , vol.3 , pp. 171-173
    • Masuda, T.1
  • 39
    • 33746308062 scopus 로고    scopus 로고
    • Glial inhibition of CNS axon regeneration
    • Yiu G., He Z. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 2006, 7:617-627.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 617-627
    • Yiu, G.1    He, Z.2
  • 40
    • 70350502060 scopus 로고    scopus 로고
    • PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration
    • Shen Y., et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009, 326:592-596.
    • (2009) Science , vol.326 , pp. 592-596
    • Shen, Y.1
  • 41
    • 79955766629 scopus 로고    scopus 로고
    • Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling
    • Tan C.L., et al. Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. J. Neurosci. 2011, 31:6289-6295.
    • (2011) J. Neurosci. , vol.31 , pp. 6289-6295
    • Tan, C.L.1
  • 42
    • 0037061426 scopus 로고    scopus 로고
    • Chondroitinase ABC promotes functional recovery after spinal cord injury
    • Bradbury E.J., et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002, 416:636-640.
    • (2002) Nature , vol.416 , pp. 636-640
    • Bradbury, E.J.1
  • 43
    • 0742288565 scopus 로고    scopus 로고
    • Regeneration beyond the glial scar
    • Silver J., Miller J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004, 5:146-156.
    • (2004) Nat. Rev. Neurosci. , vol.5 , pp. 146-156
    • Silver, J.1    Miller, J.H.2
  • 44
    • 24344470604 scopus 로고    scopus 로고
    • Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord
    • Steinmetz M.P., et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J. Neurosci. 2005, 25:8066-8076.
    • (2005) J. Neurosci. , vol.25 , pp. 8066-8076
    • Steinmetz, M.P.1
  • 45
    • 37549007826 scopus 로고    scopus 로고
    • Delayed priming promotes CNS regeneration post-rhizotomy in Neurocan and Brevican-deficient mice
    • Quaglia X., et al. Delayed priming promotes CNS regeneration post-rhizotomy in Neurocan and Brevican-deficient mice. Brain 2008, 131:240-249.
    • (2008) Brain , vol.131 , pp. 240-249
    • Quaglia, X.1
  • 46
    • 0033584247 scopus 로고    scopus 로고
    • Axonal regeneration from injured dorsal roots into the spinal cord of adult rats
    • Chong M.S., et al. Axonal regeneration from injured dorsal roots into the spinal cord of adult rats. J. Comp. Neurol. 1999, 410:42-54.
    • (1999) J. Comp. Neurol. , vol.410 , pp. 42-54
    • Chong, M.S.1
  • 47
    • 0034688281 scopus 로고    scopus 로고
    • Functional regeneration of sensory axons into the adult spinal cord
    • Ramer M.S., et al. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000, 403:312-316.
    • (2000) Nature , vol.403 , pp. 312-316
    • Ramer, M.S.1
  • 48
    • 0035871725 scopus 로고    scopus 로고
    • Two-tiered inhibition of axon regeneration at the dorsal root entry zone
    • Ramer M.S., et al. Two-tiered inhibition of axon regeneration at the dorsal root entry zone. J. Neurosci. 2001, 21:2651-2660.
    • (2001) J. Neurosci. , vol.21 , pp. 2651-2660
    • Ramer, M.S.1
  • 49
    • 68849086666 scopus 로고    scopus 로고
    • Overcoming macrophage-mediated axonal dieback following CNS injury
    • Busch S.A., et al. Overcoming macrophage-mediated axonal dieback following CNS injury. J. Neurosci. 2009, 29:9967-9976.
    • (2009) J. Neurosci. , vol.29 , pp. 9967-9976
    • Busch, S.A.1
  • 50
    • 41149091672 scopus 로고    scopus 로고
    • Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury
    • Wang R., et al. Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury. Nat. Neurosci. 2008, 11:488-496.
    • (2008) Nat. Neurosci. , vol.11 , pp. 488-496
    • Wang, R.1
  • 51
    • 0032533708 scopus 로고    scopus 로고
    • NT-3 delivered by an adenoviral vector induces injured dorsal root axons to regenerate into the spinal cord of adult rats
    • Zhang Y., et al. NT-3 delivered by an adenoviral vector induces injured dorsal root axons to regenerate into the spinal cord of adult rats. J. Neurosci. Res. 1998, 54:554-562.
    • (1998) J. Neurosci. Res. , vol.54 , pp. 554-562
    • Zhang, Y.1
  • 52
    • 0035503328 scopus 로고    scopus 로고
    • Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy
    • Romero M.I., et al. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J. Neurosci. 2001, 21:8408-8416.
    • (2001) J. Neurosci. , vol.21 , pp. 8408-8416
    • Romero, M.I.1
  • 53
    • 34249828947 scopus 로고    scopus 로고
    • Targeting sensory axon regeneration in adult spinal cord
    • Tang X.Q., et al. Targeting sensory axon regeneration in adult spinal cord. J. Neurosci. 2007, 27:6068-6078.
    • (2007) J. Neurosci. , vol.27 , pp. 6068-6078
    • Tang, X.Q.1
  • 54
    • 0034660331 scopus 로고    scopus 로고
    • Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord
    • Romero M.I., et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J. Neurosci. 2000, 20:4435-4445.
    • (2000) J. Neurosci. , vol.20 , pp. 4435-4445
    • Romero, M.I.1
  • 55
    • 4544383733 scopus 로고    scopus 로고
    • Functional repair after dorsal root rhizotomy using nerve conduits and neurotrophic molecules
    • Tang X.Q., et al. Functional repair after dorsal root rhizotomy using nerve conduits and neurotrophic molecules. Eur. J. Neurosci. 2004, 20:1211-1218.
    • (2004) Eur. J. Neurosci. , vol.20 , pp. 1211-1218
    • Tang, X.Q.1
  • 56
    • 69449094846 scopus 로고    scopus 로고
    • Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury
    • Alto L.T., et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat. Neurosci. 2009, 12:1106-1113.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1106-1113
    • Alto, L.T.1
  • 57
    • 70350203996 scopus 로고    scopus 로고
    • Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury
    • Kadoya K., et al. Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 2009, 64:165-172.
    • (2009) Neuron , vol.64 , pp. 165-172
    • Kadoya, K.1
  • 58
    • 77954931796 scopus 로고    scopus 로고
    • Topographically specific regeneration of sensory axons in the spinal cord
    • Harvey P., et al. Topographically specific regeneration of sensory axons in the spinal cord. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11585-11590.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 11585-11590
    • Harvey, P.1
  • 59
    • 79951670491 scopus 로고    scopus 로고
    • Neurotrophin 3 improves delayed reconstruction of sensory pathways after cervical dorsal root injury
    • discussion 461
    • Liu S., et al. Neurotrophin 3 improves delayed reconstruction of sensory pathways after cervical dorsal root injury. Neurosurgery 2011, 68:450-461. discussion 461.
    • (2011) Neurosurgery , vol.68 , pp. 450-461
    • Liu, S.1
  • 60
    • 47649095314 scopus 로고    scopus 로고
    • Activity-dependent plasticity: implications for recovery after spinal cord injury
    • Dunlop S.A. Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci. 2008, 31:410-418.
    • (2008) Trends Neurosci. , vol.31 , pp. 410-418
    • Dunlop, S.A.1
  • 61
    • 34249724886 scopus 로고    scopus 로고
    • Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair
    • Galtrey C.M., et al. Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain 2007, 130:926-939.
    • (2007) Brain , vol.130 , pp. 926-939
    • Galtrey, C.M.1
  • 62
    • 69449093524 scopus 로고    scopus 로고
    • Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation
    • Garcia-Alias G., et al. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 2009, 12:1145-1151.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1145-1151
    • Garcia-Alias, G.1
  • 63
    • 0036198235 scopus 로고    scopus 로고
    • Neurotrophin-3-mediated regeneration and recovery of proprioception following dorsal rhizotomy
    • Ramer M.S., et al. Neurotrophin-3-mediated regeneration and recovery of proprioception following dorsal rhizotomy. Mol. Cell. Neurosci. 2002, 19:239-249.
    • (2002) Mol. Cell. Neurosci. , vol.19 , pp. 239-249
    • Ramer, M.S.1
  • 64
    • 9644262560 scopus 로고    scopus 로고
    • A soluble Nogo receptor differentially affects plasticity of spinally projecting axons
    • MacDermid V.E., et al. A soluble Nogo receptor differentially affects plasticity of spinally projecting axons. Eur. J. Neurosci. 2004, 20:2567-2579.
    • (2004) Eur. J. Neurosci. , vol.20 , pp. 2567-2579
    • MacDermid, V.E.1
  • 65
    • 31544480379 scopus 로고    scopus 로고
    • Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord
    • Wong L.F., et al. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat. Neurosci. 2006, 9:243-250.
    • (2006) Nat. Neurosci. , vol.9 , pp. 243-250
    • Wong, L.F.1
  • 66
    • 0029034576 scopus 로고
    • Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons
    • Averill S., et al. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 1995, 7:1484-1494.
    • (1995) Eur. J. Neurosci. , vol.7 , pp. 1484-1494
    • Averill, S.1
  • 67
    • 78650517458 scopus 로고    scopus 로고
    • Neuronal circuitry for pain processing in the dorsal horn
    • Todd A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11:823-836.
    • (2010) Nat. Rev. Neurosci. , vol.11 , pp. 823-836
    • Todd, A.J.1
  • 68
    • 0030734892 scopus 로고    scopus 로고
    • IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life
    • Molliver D.C., et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 1997, 19:849-861.
    • (1997) Neuron , vol.19 , pp. 849-861
    • Molliver, D.C.1
  • 69
    • 0037474137 scopus 로고    scopus 로고
    • Distribution and colocalization of NGF and GDNF family ligand receptor mRNAs in dorsal root and nodose ganglion neurons of adult rats
    • Kashiba H., et al. Distribution and colocalization of NGF and GDNF family ligand receptor mRNAs in dorsal root and nodose ganglion neurons of adult rats. Brain Res. Mol. Brain Res. 2003, 110:52-62.
    • (2003) Brain Res. Mol. Brain Res. , vol.110 , pp. 52-62
    • Kashiba, H.1
  • 70
    • 0003046414 scopus 로고
    • Primary afferent projections to the spinal cord
    • Academic Press, G. Paxinos (Ed.)
    • Grant G. Primary afferent projections to the spinal cord. The Rat Nervous System 1995, 61-66. Academic Press. G. Paxinos (Ed.).
    • (1995) The Rat Nervous System , pp. 61-66
    • Grant, G.1
  • 71
    • 0028329355 scopus 로고
    • Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements
    • Klein R., et al. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 1994, 368:249-251.
    • (1994) Nature , vol.368 , pp. 249-251
    • Klein, R.1
  • 72
    • 0027973375 scopus 로고
    • Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons
    • Tessarollo L., et al. Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:11844-11848.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 11844-11848
    • Tessarollo, L.1
  • 74
    • 0029959555 scopus 로고    scopus 로고
    • The molecular biology of axon guidance
    • Tessier-Lavigne M., Goodman C.S. The molecular biology of axon guidance. Science 1996, 274:1123-1133.
    • (1996) Science , vol.274 , pp. 1123-1133
    • Tessier-Lavigne, M.1    Goodman, C.S.2
  • 75
    • 0242403192 scopus 로고    scopus 로고
    • Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth
    • Cao X., Shoichet M.S. Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience 2003, 122:381-389.
    • (2003) Neuroscience , vol.122 , pp. 381-389
    • Cao, X.1    Shoichet, M.S.2
  • 76
    • 33748887028 scopus 로고    scopus 로고
    • Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord
    • Taylor L., et al. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci. 2006, 26:9713-9721.
    • (2006) J. Neurosci. , vol.26 , pp. 9713-9721
    • Taylor, L.1
  • 77
    • 0030222129 scopus 로고    scopus 로고
    • Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord
    • Oudega M., Hagg T. Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp. Neurol. 1996, 140:218-229.
    • (1996) Exp. Neurol. , vol.140 , pp. 218-229
    • Oudega, M.1    Hagg, T.2
  • 78
    • 0035122596 scopus 로고    scopus 로고
    • Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels
    • Bamber N.I., et al. Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur. J. Neurosci. 2001, 13:257-268.
    • (2001) Eur. J. Neurosci. , vol.13 , pp. 257-268
    • Bamber, N.I.1
  • 79
    • 79953015414 scopus 로고    scopus 로고
    • Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord
    • Bonner J.F., et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J. Neurosci. 2011, 31:4675-4686.
    • (2011) J. Neurosci. , vol.31 , pp. 4675-4686
    • Bonner, J.F.1
  • 80
    • 0036703628 scopus 로고    scopus 로고
    • Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility
    • Dontchev V.D., Letourneau P.C. Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J. Neurosci. 2002, 22:6659-6669.
    • (2002) J. Neurosci. , vol.22 , pp. 6659-6669
    • Dontchev, V.D.1    Letourneau, P.C.2
  • 81
    • 0033994238 scopus 로고    scopus 로고
    • The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury
    • Bennett D.L., et al. The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. J. Neurosci. 2000, 20:427-437.
    • (2000) J. Neurosci. , vol.20 , pp. 427-437
    • Bennett, D.L.1
  • 82
    • 0034958440 scopus 로고    scopus 로고
    • GFRalpha3 is expressed predominantly in nociceptive sensory neurons
    • Orozco O.E., et al. GFRalpha3 is expressed predominantly in nociceptive sensory neurons. Eur. J. Neurosci. 2001, 13:2177-2182.
    • (2001) Eur. J. Neurosci. , vol.13 , pp. 2177-2182
    • Orozco, O.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.