-
1
-
-
21244436795
-
Hierarchical Kronecker tensor-product approximations
-
W. Hackbusch, B.N. Khoromskij and E.E. Tyrtyshnikov, Hierarchical Kronecker tensor-product approximations, J. Numer. Math., 13 (2005), 119-156.
-
(2005)
J. Numer. Math.
, vol.13
, pp. 119-156
-
-
Hackbusch, W.1
Khoromskij, B.N.2
Tyrtyshnikov, E.E.3
-
3
-
-
17144410769
-
Hierarchical tensor-Product approximation to the inverse and related operators for high-dimensional elliptic problems
-
I. Gavrilyuk, W. Hackbusch and B. Khoromskij, Hierarchical tensor-Product approximation to the inverse and related operators for high-dimensional elliptic problems, Computing, 74 (2005), 131-157.
-
(2005)
Computing
, vol.74
, pp. 131-157
-
-
Gavrilyuk, I.1
Hackbusch, W.2
Khoromskij, B.3
-
4
-
-
3042756404
-
Existence and computation of a low Kronecker-rank approximation to the solution of a tensor system with tensor right-hand side
-
L. Grasedyck, Existence and computation of a low Kronecker-rank approximation to the solution of a tensor system with tensor right-hand side, Computing, 72 (2004), 247-265.
-
(2004)
Computing
, vol.72
, pp. 247-265
-
-
Grasedyck, L.1
-
5
-
-
0036679114
-
Numerical operator calculus in higher dimensions
-
G. Beylkin and M.J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc. Nat. Acad. Sci. USA, 99:16 (2002), 10246-10251.
-
(2002)
Proc. Nat. Acad. Sci. USA
, vol.99
, Issue.16
, pp. 10246-10251
-
-
Beylkin, G.1
Mohlenkamp, M.J.2
-
6
-
-
27844496824
-
Algorithms for numerical analysis in high dimensions
-
G. Beylkin and M.J. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26:6 (2005), 2133-2159.
-
(2005)
SIAM J. Sci. Comput.
, vol.26
, pp. 2133-2159
-
-
Beylkin, G.1
Mohlenkamp, M.J.2
-
7
-
-
85162707890
-
The expression of a tensor or a polyadic as a sum of products
-
F. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6 (1927), 164-189.
-
(1927)
J. Math. Phys.
, vol.6
, pp. 164-189
-
-
Hitchcock, F.1
-
8
-
-
0002740437
-
Foundations of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis
-
R.A. Harshman, Foundations of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), 1-84.
-
(1970)
UCLA Working Papers in Phonetics
, vol.16
, pp. 1-84
-
-
Harshman, R.A.1
-
9
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition
-
J.D. Carroll and J.J. Chang, Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970), 283-319.
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.J.2
-
10
-
-
0030813663
-
PARAFAC: Tutorial and applications
-
R. Bro, PARAFAC: Tutorial and applications, Chemometr. Intell. Lab., 38:2 (1997), 149-171.
-
(1997)
Chemometr. Intell. Lab.
, vol.38
, pp. 149-171
-
-
Bro, R.1
-
11
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
V. De Silva and L.H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal, 30:3 (2008), 1084-1127.
-
(2008)
SIAM J. Matrix Anal
, vol.30
, Issue.3
, pp. 1084-1127
-
-
De Silva, V.1
Lim, L.H.2
-
12
-
-
33750308016
-
Minimization methods for approximating tensors and their comparison
-
I.V. Oseledets and D.V. Savostyanov, Minimization methods for approximating tensors and their comparison, Comput. Math. Math. Phys., 46:10 (2006), 1641-1650.
-
(2006)
Comput. Math. Math. Phys.
, vol.46
, Issue.1
, pp. 1641-1650
-
-
Oseledets, I.V.1
Savostyanov, D.V.2
-
15
-
-
29144513721
-
Low-rank Kronecker-product approximation to multidimensional nonlocal operators. Part I. Separable approximation of multi-variate functions
-
W. Hackbusch and B.N. Khoromskij, Low-rank Kronecker-product approximation to multidimensional nonlocal operators. Part I. Separable approximation of multi-variate functions, Computing, 76:3-4 (2006), 177-202.
-
(2006)
Computing
, vol.76
, Issue.3-4
, pp. 177-202
-
-
Hackbusch, W.1
Khoromskij, B.N.2
-
16
-
-
29144481646
-
Low-rank Kronecker-product approximation to multidimensional nonlocal operators. Part II. HKT representation of certain operators
-
W. Hackbusch and B.N. Khoromskij, Low-rank Kronecker-product approximation to multidimensional nonlocal operators. Part II. HKT representation of certain operators, Computing, 76:3-4 (2006), 203-225.
-
(2006)
Computing
, vol.76
, Issue.3-4
, pp. 203-225
-
-
Hackbusch, W.1
Khoromskij, B.N.2
-
17
-
-
11244324581
-
Theory and practice of finite elements
-
Springer-Verlag, New York
-
A. Ern and J.L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.
-
(2004)
Appl. Math. Sci.
, vol.159
-
-
Ern, A.1
Guermond, J.L.2
-
18
-
-
70449528138
-
Breaking the curse of dimensionality, or how to use SVD in many dimensions
-
I.V. Oseledets and E.E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput., 31:5 (2009), 3744-3759.
-
(2009)
SIAM J. Sci. Comput.
, vol.31
, pp. 3744-3759
-
-
Oseledets, I.V.1
Tyrtyshnikov, E.E.2
-
19
-
-
70449525345
-
TT-cross approximation for multidimensional arrays
-
I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432:1 (2010), 70-88.
-
(2010)
Linear Algebra Appl.
, vol.432
, Issue.1
, pp. 70-88
-
-
Oseledets, I.1
Tyrtyshnikov, E.2
-
20
-
-
79960994573
-
O(d log n)-Quantics approximation of N - d tensors in high-dimensional numerical modeling
-
B.N. Khoromskij, O(d log n)-Quantics approximation of N - d tensors in high-dimensional numerical modeling, Constr. Appr., 34:2 (2011), 257-280.
-
(2011)
Constr. Appr.
, vol.34
, Issue.2
, pp. 257-280
-
-
Khoromskij, B.N.1
|