-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
-
Lorenz E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20:130-141. 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
0000737887
-
The route to chaos in a dripping water faucet
-
10.1119/1.16783
-
Dreyer K. Hickey F.R. The route to chaos in a dripping water faucet. Am. J. Phys. 1991, 59:619-627. 10.1119/1.16783.
-
(1991)
Am. J. Phys.
, vol.59
, pp. 619-627
-
-
Dreyer, K.1
Hickey, F.R.2
-
3
-
-
0001553819
-
Controlling chaos with simple limiters
-
10.1103/PhysRevLett.84.3835
-
Corron N.J. Pethel S.D. Hopper B.A. Controlling chaos with simple limiters. Phys. Rev. Lett. 2000, 84:3835-3838. 10.1103/PhysRevLett.84.3835.
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 3835-3838
-
-
Corron, N.J.1
Pethel, S.D.2
Hopper, B.A.3
-
4
-
-
0344459334
-
Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction
-
10.1063/1.435267
-
Schmitz R.A. Graziani K.R. Hudson J.L. Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 1977, 67:3040-3044. 10.1063/1.435267.
-
(1977)
J. Chem. Phys.
, vol.67
, pp. 3040-3044
-
-
Schmitz, R.A.1
Graziani, K.R.2
Hudson, J.L.3
-
5
-
-
62649138305
-
-
P. R. Berman, E. Arimondo, C. Lin, and edited by (Elsevier, Amsterdam)
-
Illing L. Gauthier D.J. Roy R. Advances in Atomic, Molecular, and Optical Physics 2007, 54:615-695. P. R. Berman, E. Arimondo, and C. Lin, and edited by (Elsevier, Amsterdam)
-
(2007)
Advances in Atomic, Molecular, and Optical Physics
, vol.54
, pp. 615-695
-
-
Illing, L.1
Gauthier, D.J.2
Roy, R.3
-
6
-
-
27844600696
-
Chaos-based communications at high bit rates using commercial fibre-optic links
-
10.1038/nature04275
-
Argyris A. Syvridis D. Larger L. Annovazzi-Lodi V. Colet P. Fischer I. Garcia-Ojalvo J. Mirasso C.R. Pesquera L. Shore K.A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature (London) 2005, 438:343-346. 10.1038/nature04275.
-
(2005)
Nature (London)
, vol.438
, pp. 343-346
-
-
Argyris, A.1
Syvridis, D.2
Larger, L.3
Annovazzi-Lodi, V.4
Colet, P.5
Fischer, I.6
Garcia-Ojalvo, J.7
Mirasso, C.R.8
Pesquera, L.9
Shore, K.A.10
-
8
-
-
77949551504
-
Broadband chaos generated by an optoelectronic oscillator
-
10.1103/PhysRevLett.104.113901
-
Callan K.E. Illing L. Gao Z. Gauthier D.J. Schöll E. Broadband chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 2010, 104:113901. 10.1103/PhysRevLett.104.113901.
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 113901
-
-
Callan, K.E.1
Illing, L.2
Gao, Z.3
Gauthier, D.J.4
Schöll, E.5
-
9
-
-
0004154108
-
-
(University of Washington Press, Seattle, WA)
-
Lorenz E.N. The Essence of Chaos 1993, (University of Washington Press, Seattle, WA)
-
(1993)
The Essence of Chaos
-
-
Lorenz, E.N.1
-
10
-
-
0000286947
-
Non-periodic convection at high and low Prandtl number
-
Malkus W.V. R. Non-periodic convection at high and low Prandtl number. Mem. Soc. R. Sci. Liege Collect. 1972, 4:125-128.
-
(1972)
Mem. Soc. R. Sci. Liege Collect.
, vol.4
, pp. 125-128
-
-
Malkus, W.V.R.1
-
12
-
-
0029276820
-
Chaos in a real system
-
10.1177/003754979506400305.
-
Tylee J.L. Chaos in a real system. Simulation 1995, 64:176-183. 10.1177/003754979506400305.
-
(1995)
Simulation
, vol.64
, pp. 176-183
-
-
Tylee, J.L.1
-
14
-
-
0000884776
-
Magnetic braking: Improved theory
-
10.1119/1.15570.
-
Heald M.A. Magnetic braking: Improved theory. Am. J. Phys. 1988, 56:521-522. 10.1119/1.15570.
-
(1988)
Am. J. Phys.
, vol.56
, pp. 521-522
-
-
Heald, M.A.1
-
15
-
-
0000080283
-
Magnetic drag in the quasi-static limit: A computational method
-
10.1119/1.16623
-
Marcuso M. Gass R. Jones D. Rowlett C. Magnetic drag in the quasi-static limit: A computational method. Am. J. Phys. 1991, 59:1118-1123. 10.1119/1.16623.
-
(1991)
Am. J. Phys.
, vol.59
, pp. 1118-1123
-
-
Marcuso, M.1
Gass, R.2
Jones, D.3
Rowlett, C.4
-
16
-
-
84857493734
-
-
Since one can assume the air drag to be linear in the angular velocity, it is included in this analysis and contributes to κ.
-
Since one can assume the air drag to be linear in the angular velocity, it is included in this analysis and contributes to κ.
-
-
-
-
17
-
-
37349087524
-
The Malkus-Lorenz water wheel revisited
-
10.1119/1.2785209.
-
Matson L.E. The Malkus-Lorenz water wheel revisited. Am. J. Phys. 2007, 75:1114-1122. 10.1119/1.2785209.
-
(2007)
Am. J. Phys.
, vol.75
, pp. 1114-1122
-
-
Matson, L.E.1
-
18
-
-
84857485725
-
-
We use Loc-Line hoses and nozzles.
-
We use Loc-Line hoses and nozzles.
-
-
-
-
19
-
-
84857463510
-
-
DigiFlow 8000T.
-
DigiFlow 8000T.
-
-
-
-
22
-
-
0001201892
-
Computer assisted proof of chaos in the Lorenz equations
-
10.1016/S0167-2789(97)00233-9
-
Galias Z. Zgliczynski P. Computer assisted proof of chaos in the Lorenz equations. Physica D 1998, 115:165-188. 10.1016/S0167-2789(97)00233-9.
-
(1998)
Physica D
, vol.115
, pp. 165-188
-
-
Galias, Z.1
Zgliczynski, P.2
-
23
-
-
0033563546
-
The Lorenz attractor exists
-
10.1016/S0764-4442(99)80439-X.
-
Tucker W. The Lorenz attractor exists. C. R. Acad. Sci. Ser. I: Math. 1999, 328:1197-1202. 10.1016/S0764-4442(99)80439-X.
-
(1999)
C. R. Acad. Sci. Ser. I: Math.
, vol.328
, pp. 1197-1202
-
-
Tucker, W.1
-
24
-
-
0035216342
-
Chaos in the Lorenz equations: A computer assisted proof part III: Classical parameter values
-
10.1006/jdeq.2000.3894
-
Mischaikow K. Mrozek M. Szymczak A. Chaos in the Lorenz equations: A computer assisted proof part III: Classical parameter values. J. Diff. Eqs. 2001, 169:17-56. 10.1006/jdeq.2000.3894.
-
(2001)
J. Diff. Eqs.
, vol.169
, pp. 17-56
-
-
Mischaikow, K.1
Mrozek, M.2
Szymczak, A.3
-
28
-
-
84857474952
-
-
Chaos synchronization was independently discovered three times: by H. Fujisaka and T. Yamada in Japan [Prog. Theor. Phys. 69, 32-47 (1983)], by V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich in the USSR [Radiophys. Quantum Electron. 29, 795-803 (1986)], and by L. M. Pecora and T. L. Carroll in the US [Phys. Rev. Lett. 64, 821-824
-
Chaos synchronization was independently discovered three times: by H. Fujisaka and T. Yamada in Japan [Prog. Theor. Phys. 69, 32-47 (1983)], by V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich in the USSR [Radiophys. Quantum Electron. 29, 795-803 (1986)], and by L. M. Pecora and T. L. Carroll in the US [Phys. Rev. Lett. 64, 821-824 (1990)].
-
-
-
-
29
-
-
34547207039
-
Adaptive observer-based synchronization of the nonlinear nonpassifiable systems
-
10.1134/S0005117907070077
-
Andrievskii B.R. Nikiforov V.O. Fradkov A.L. Adaptive observer-based synchronization of the nonlinear nonpassifiable systems. Autom. Remote Control 2007, 68:1186-1200. 10.1134/S0005117907070077.
-
(2007)
Autom. Remote Control
, vol.68
, pp. 1186-1200
-
-
Andrievskii, B.R.1
Nikiforov, V.O.2
Fradkov, A.L.3
-
30
-
-
46749095968
-
Estimating parameters by autosynchronization with dynamics restrictions
-
10.1103/PhysRevE.77.066221
-
Yu D.C. Parlitz U. Estimating parameters by autosynchronization with dynamics restrictions. Phys. Rev. E 2008, 77:066221. 10.1103/PhysRevE.77.066221.
-
(2008)
Phys. Rev. E
, vol.77
, pp. 066221
-
-
Yu, D.C.1
Parlitz, U.2
-
31
-
-
70349651749
-
Using synchronization of chaos to identify the dynamics of unknown systems
-
10.1063/1.3186458
-
Sorrentino F. Ott E. Using synchronization of chaos to identify the dynamics of unknown systems. Chaos 2009, 19:033108. 10.1063/1.3186458.
-
(2009)
Chaos
, vol.19
, pp. 033108
-
-
Sorrentino, F.1
Ott, E.2
-
33
-
-
0008494528
-
Determining Lyapunov exponents from a time-series
-
10.1016/0167-2789(85)90011-9
-
Wolf A. Swift J.B. Swinney H.L. Vastano J.A. Determining Lyapunov exponents from a time-series. Physica D 1985, 16:285-317. 10.1016/0167-2789(85)90011-9.
-
(1985)
Physica D
, vol.16
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
34
-
-
0000471425
-
Comparison of different methods for computing Lyapunov exponents
-
10.1143/PTP.83.875
-
Geist K. Parlitz U. Lauterborn W. Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 1990, 83:875-893. 10.1143/PTP.83.875.
-
(1990)
Prog. Theor. Phys.
, vol.83
, pp. 875-893
-
-
Geist, K.1
Parlitz, U.2
Lauterborn, W.3
-
35
-
-
0009809703
-
Studying chaotic systems using microcomputer simulations and Lyapunov exponents
-
10.1119/1.16163
-
Souza-Machado S.D. Rollins R.W. Jacobs D.T. Hartman J.L. Studying chaotic systems using microcomputer simulations and Lyapunov exponents. Am. J. Phys. 1990, 58:321-329. 10.1119/1.16163.
-
(1990)
Am. J. Phys.
, vol.58
, pp. 321-329
-
-
Souza-Machado, S.D.1
Rollins, R.W.2
Jacobs, D.T.3
Hartman, J.L.4
-
36
-
-
0000543733
-
A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
-
Oseledets V.I. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 1968, 19:197-231.
-
(1968)
Trans. Moscow Math. Soc.
, vol.19
, pp. 197-231
-
-
Oseledets, V.I.1
-
37
-
-
48749145669
-
The Dimension of chaotic attractors
-
10.1016/0167-2789(83)90125-2
-
Farmer J.D. Ott E. Yorke J.A. The Dimension of chaotic attractors. Physica D 1983, 7:153-180. 10.1016/0167-2789(83)90125-2.
-
(1983)
Physica D
, vol.7
, pp. 153-180
-
-
Farmer, J.D.1
Ott, E.2
Yorke, J.A.3
-
38
-
-
0018989294
-
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Part 1: Theory
-
10.1007/BF02128236
-
Benettin G. Galgani L. Giorgilli A. Strelcyn J.M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Part 1: Theory. Meccanica 1980, 9:9-20. 10.1007/BF02128236.
-
(1980)
Meccanica
, vol.9
, pp. 9-20
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.M.4
-
39
-
-
0018992908
-
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Part 2: Numerical Application
-
10.1007/BF02128237
-
Benettin G. Galgani L. Giorgilli A. Strelcyn J.M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Part 2: Numerical Application. Meccanica 1980, 9:21-30. 10.1007/BF02128237.
-
(1980)
Meccanica
, vol.9
, pp. 21-30
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.M.4
-
41
-
-
0035911773
-
Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions
-
10.1016/S0375-9601(01)00109-8.
-
Swinnerton-Dyer P. Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions. Phys. Lett. A 2001, 281:161-167. 10.1016/S0375-9601(01)00109-8.
-
(2001)
Phys. Lett. A
, vol.281
, pp. 161-167
-
-
Swinnerton-Dyer, P.1
|