메뉴 건너뛰기




Volumn 48, Issue 2, 2012, Pages 283-302

A Bayesian feature selection paradigm for text classification

Author keywords

Bayesian feature selection; Metropolis search; Mixture model; Text classification

Indexed keywords

COMPUTATIONAL EFFICIENCY; FEATURE EXTRACTION; INFORMATION RETRIEVAL SYSTEMS; PROBABILITY DISTRIBUTIONS; TEXT PROCESSING;

EID: 84857369324     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2011.08.002     Document Type: Article
Times cited : (39)

References (20)
  • 4
    • 0020998698 scopus 로고
    • On using principal components before separating a mixture of two multivariate normal distributions
    • W-C. Chang On using principal components before separating a mixture of two multivariate normal distributions Applied Statistics 32 1983 267 275
    • (1983) Applied Statistics , vol.32 , pp. 267-275
    • Chang, W.-C.1
  • 8
    • 33845734547 scopus 로고    scopus 로고
    • Variable selection in clustering via Dirichlet process mixture models
    • DOI 10.1093/biomet/93.4.877
    • S. Kim, M.G. Tadesse, and M. Vannucci Variable selection in clustering via Dirichlet process mixture models Biometrika 93 2006 877 893 (Pubitemid 44973874)
    • (2006) Biometrika , vol.93 , Issue.4 , pp. 877-893
    • Kim, S.1    Tadesse, M.G.2    Vannucci, M.3
  • 10
    • 8644280930 scopus 로고    scopus 로고
    • Probabilistic relevance models based on document and query generation
    • W.B. Croft, J. Lafferty, Kluwer Academic Publishers
    • J. Lafferty, and C. Zhai Probabilistic relevance models based on document and query generation W.B. Croft, J. Lafferty, Language modeling and information retrieval 2003 Kluwer Academic Publishers
    • (2003) Language Modeling and Information Retrieval
    • Lafferty, J.1    Zhai, C.2
  • 13
    • 64549153563 scopus 로고    scopus 로고
    • Combination of modified BPNN algorithms and an efficient feature selection method for text categorization
    • C.H. Li, and S.C. Park Combination of modified BPNN algorithms and an efficient feature selection method for text categorization Information Processing and Management 45 2009 329 340
    • (2009) Information Processing and Management , vol.45 , pp. 329-340
    • Li, C.H.1    Park, S.C.2
  • 14
    • 84950424966 scopus 로고
    • Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies
    • J.S. Liu, A.F. Neuwald, and C.E. Lawrence Bayesian model for multiple local sequence alignment and gibbs sampling strategies Journal of the American Statistical Association 432 1995 1156 1170 (Pubitemid 126093131)
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.432 , pp. 1156-1170
    • Liu, J.S.1    Neuwald, A.F.2    Lawrence, C.E.3
  • 17
    • 0037818380 scopus 로고    scopus 로고
    • High-performing feature selection for text classification
    • ACM
    • Rogati, M., & Yang, Y. (2002). High-performing feature selection for text classification, CIKM'02, ACM.
    • (2002) CIKM'02
    • Rogati, M.1    Yang, Y.2
  • 18
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani Machine learning in automated text categorization ACM Computing Surveys 34 2002 1 47
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 20
    • 20444465712 scopus 로고    scopus 로고
    • Bayesian variable selection in clustering high-dimensional data
    • DOI 10.1198/016214504000001565
    • M.G. Tadesse, N. Sha, and M. Vannucci Bayesian variable selection in clustering high-dimensional data Journal of the American Statistical Association 100 2005 602 617 (Pubitemid 40816597)
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.470 , pp. 602-617
    • Tadesse, M.G.1    Sha, N.2    Vannucci, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.