메뉴 건너뛰기




Volumn 7, Issue 2, 2012, Pages 129-140

Correction of inhomogeneous magnetic resonance images using multiscale retinex for segmentation accuracy improvement

Author keywords

Boosted decision tree; Brain tissue; Multiscale retinex; Segmentation; Spatial feature

Indexed keywords

BRAIN; CEREBROSPINAL FLUID; DECISION TREES; IMAGE SEGMENTATION; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; MAXIMUM PRINCIPLE; TISSUE; TREES (MATHEMATICS);

EID: 84857356581     PISSN: 17468094     EISSN: 17468108     Source Type: Journal    
DOI: 10.1016/j.bspc.2011.04.001     Document Type: Article
Times cited : (11)

References (37)
  • 1
    • 0027730049 scopus 로고
    • Intracranial deformation caused by brain tumors: Assessment of 3-D surface by magnetic resonance imaging
    • DOI 10.1109/42.251120
    • D. Dong-yong, B. Condon, D. Hadley, R. Rampling, and G. Teasdale Intracranial deformation caused by brain tumors: assessment of 3-D surface by magnetic resonance imaging IEEE Trans. Med. Imaging 12 1993 693 702 (Pubitemid 2022623)
    • (1993) IEEE Transactions on Medical Imaging , vol.12 , Issue.4 , pp. 693-702
    • Dong-Yong, D.1    Condon, B.2    Hadley, D.3    Rampling, R.4    Teasdale, G.5
  • 3
    • 4444333897 scopus 로고    scopus 로고
    • A brain tumor segmentation framework based on outlier detection
    • DOI 10.1016/j.media.2004.06.007, PII S1361841504000295
    • M. Prastawa, E. Bullitt, S. Ho, and G. Gerig A brain tumor segmentation framework based on outlier detection Med. Image Anal. 8 2004 275 283 (Pubitemid 39185911)
    • (2004) Medical Image Analysis , vol.8 , Issue.3 , pp. 275-283
    • Prastawa, M.1    Bullitt, E.2    Ho, S.3    Gerig, G.4
  • 4
    • 33845339640 scopus 로고    scopus 로고
    • A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images
    • DOI 10.1016/j.imavis.2006.01.025, PII S0262885606000734
    • W.B. Dou, S. Ruan, Y.P. Chen, D. Bloyet, and J.M. Constans A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images Image Vis. Comput. 25 2007 164 171 (Pubitemid 44873142)
    • (2007) Image and Vision Computing , vol.25 , Issue.2 , pp. 164-171
    • Dou, W.1    Ruan, S.2    Chen, Y.3    Bloyet, D.4    Constans, J.-M.5
  • 5
    • 0028494865 scopus 로고
    • Parameter estimation and tissue segmentation from multispectral MR images
    • L. Zhengrong, J.R. MacFall, and D.P. Harrington Parameter estimation and tissue segmentation from multispectral MR images IEEE Trans. Med. Imaging 13 1994 441 449
    • (1994) IEEE Trans. Med. Imaging , vol.13 , pp. 441-449
    • Zhengrong, L.1    MacFall, J.R.2    Harrington, D.P.3
  • 6
    • 0035469969 scopus 로고    scopus 로고
    • Segmentation of brain 3D MR images using level sets and dense registration
    • DOI 10.1016/S1361-8415(01)00039-1, PII S1361841501000391
    • C. Baillard, P. Hellier, and C. Barillot Segmentation of brain 3D MR images using level sets and dense registration Med. Image Anal. 5 2001 185 194 (Pubitemid 35282803)
    • (2001) Medical Image Analysis , vol.5 , Issue.3 , pp. 185-194
    • Baillard, C.1    Hellier, P.2    Barillot, C.3
  • 7
    • 11244300644 scopus 로고    scopus 로고
    • Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis
    • DOI 10.1007/s00234-004-1282-3
    • C. Lukas, H.K. Hahn, B. Bellenberg, J. Rexilius, G. Schmid, and S.K. Schimrigk Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis Neuroradiology 46 2004 906 915 (Pubitemid 40057973)
    • (2004) Neuroradiology , vol.46 , Issue.11 , pp. 906-915
    • Lukas, C.1    Hahn, H.K.2    Bellenberg, B.3    Rexilius, J.4    Schmid, G.5    Schimrigk, S.K.6    Przuntek, H.7    Koster, O.8    Peitgen, H.-O.9
  • 9
    • 25844489923 scopus 로고    scopus 로고
    • MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
    • DOI 10.1109/TITB.2005.847500
    • S. Shen, W. Sandham, M. Granat, and A. Sterr MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization IEEE Trans. Inf. Technol. Biomed. 9 2005 459 467 (Pubitemid 41388212)
    • (2005) IEEE Transactions on Information Technology in Biomedicine , vol.9 , Issue.3 , pp. 459-467
    • Shen, S.1    Sandham, W.2    Granat, M.3    Sterr, A.4
  • 13
    • 2942517541 scopus 로고    scopus 로고
    • Method for bias field correction of brain T1-weighted magnetic images minimizing segmentation error
    • DOI 10.1002/hbm.20013
    • J.D. Gispert, S. Reig, J. Pascau, J.J. Vaquero, P. García-Barreno, and M. Desco Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error Hum. Brain Mapp. 22 2004 133 144 (Pubitemid 38738036)
    • (2004) Human Brain Mapping , vol.22 , Issue.2 , pp. 133-144
    • Gispert, J.D.1    Reig, S.2    Pascau, J.3    Vaquero, J.J.4    Garcia-Barreno, P.5    Desco, M.6
  • 14
    • 67349266275 scopus 로고    scopus 로고
    • Robustness of an adaptive MRI segmentation algorithm parametric intensity inhomogeneity modeling
    • M. Garcia-Sebastian, C. Hernandez, and A. d'Anjou Robustness of an adaptive MRI segmentation algorithm parametric intensity inhomogeneity modeling Neurocomputing 72 2009 2146 2152
    • (2009) Neurocomputing , vol.72 , pp. 2146-2152
    • Garcia-Sebastian, M.1    Hernandez, C.2    D'Anjou, A.3
  • 15
    • 53749095558 scopus 로고    scopus 로고
    • Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree
    • W.H. Chao, Y.Y. Chen, C.W. Cho, S.H. Lin, Y.Y. Shih, and S. Tsang Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree J. Neurosci. Methods 175 2008 206 217
    • (2008) J. Neurosci. Methods , vol.175 , pp. 206-217
    • Chao, W.H.1    Chen, Y.Y.2    Cho, C.W.3    Lin, S.H.4    Shih, Y.Y.5    Tsang, S.6
  • 16
    • 0022720492 scopus 로고
    • An alternative technique for the computation of the designator in the retinex theory of color vision
    • E. Land An alternative technique for the computation of the designator in the retinex theory of color vision Proc. Natl. Acad. Sci. U. S. A. 83 1986 3078 3080
    • (1986) Proc. Natl. Acad. Sci. U. S. A. , vol.83 , pp. 3078-3080
    • Land, E.1
  • 17
    • 0024299121 scopus 로고
    • Synthesizing a color algorithm from examples
    • A.C. Hurlbert, and T. Poggio Synthesizing a color algorithm from examples Science 239 1988 482 485
    • (1988) Science , vol.239 , pp. 482-485
    • Hurlbert, A.C.1    Poggio, T.2
  • 18
    • 0004096518 scopus 로고
    • Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA
    • A.C. Hurlbert, The computation of color, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1989.
    • (1989) The Computation of Color
    • Hurlbert, A.C.1
  • 20
    • 0005530146 scopus 로고
    • A VLSI neural network for color constancy
    • D.S. Touretzky, R. Lippman, E.S. Mateo, Morgan Kaufmann CA
    • A. Moore, G. Fox, J. Allman, and R.M. Goodman A VLSI neural network for color constancy D.S. Touretzky, R. Lippman, E.S. Mateo, Advances in Neural Information Processing 3 1991 Morgan Kaufmann CA 370 376
    • (1991) Advances in Neural Information Processing 3 , pp. 370-376
    • Moore, A.1    Fox, G.2    Allman, J.3    Goodman, R.M.4
  • 22
    • 0031188657 scopus 로고    scopus 로고
    • A multiscale retinex for bridging the gap between color images and the human observation of scenes
    • PII S105771499704726X
    • D.J. Jobson, Z. Rahman, and G.A. Woodell A multiscale retinex for bridging the gap between color images and the human observation of scenes IEEE Trans. Image Process. 6 1997 965 976 (Pubitemid 127772284)
    • (1997) IEEE Transactions on Image Processing , vol.6 , Issue.7 , pp. 965-976
    • Jobson, D.J.1    Rahman, Z.-U.2    Woodell, G.A.3
  • 25
    • 18744404266 scopus 로고    scopus 로고
    • Modeling of signal-response cascades using decision tree analysis
    • DOI 10.1093/bioinformatics/bti278
    • S. Hautaniemi, S. Kharait, A. Iwabu, A. Wells, and D.A. Lauffenburger Modeling of signal-response cascades using decision tree analysis Bioinformatics 21 2005 2027 2035 (Pubitemid 40668041)
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 2027-2035
    • Hautaniemi, S.1    Kharait, S.2    Iwabu, A.3    Wells, A.4    Lauffenburger, D.A.5
  • 26
    • 58149236665 scopus 로고    scopus 로고
    • Automatic segmentation of magnetic resonance images using a decision tree with spatial information
    • W.H. Chao, Y.Y. Chen, S.H. Lin, Y.Y.I. Shih, and S. Tsang Automatic segmentation of magnetic resonance images using a decision tree with spatial information Comput. Med. Imaging Graph. 33 2009 111 121
    • (2009) Comput. Med. Imaging Graph. , vol.33 , pp. 111-121
    • Chao, W.H.1    Chen, Y.Y.2    Lin, S.H.3    Shih, Y.Y.I.4    Tsang, S.5
  • 30
    • 33744584654 scopus 로고
    • Induction of decision tree
    • J.R. Quinlan Induction of decision tree Mach. Learn. 1 1986 81 106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 32
    • 26644445248 scopus 로고    scopus 로고
    • Predicting the outcome of construction litigation using boosted decision trees
    • DOI 10.1061/(ASCE)0887-3801(2005)19:4(387)
    • D. Arditi, and T. Pulket Predicting the outcome of construction litigation using boosted decision trees J. Comput. Civil Eng. 19 2005 387 393 (Pubitemid 41441369)
    • (2005) Journal of Computing in Civil Engineering , vol.19 , Issue.4 , pp. 387-393
    • Arditi, D.1    Pulket, T.2
  • 33
    • 0344945416 scopus 로고    scopus 로고
    • Segmentation of magnetic resonance brain images through discriminant analysis
    • DOI 10.1016/S0165-0270(03)00237-1
    • U. Amato, M. Larobina, A. Antoniadis, and B. Alfano Segmentation of magnetic resonance brain images through discriminant analysis J. Neurosci. Methods 131 2003 65 74 (Pubitemid 37491461)
    • (2003) Journal of Neuroscience Methods , vol.131 , Issue.1-2 , pp. 65-74
    • Amato, U.1    Larobina, M.2    Antoniadis, A.3    Alfano, B.4
  • 35
    • 22544441113 scopus 로고    scopus 로고
    • Partial volume segmentation of brain magnetic resonance images based on maximum a posteriori probability
    • DOI 10.1118/1.1944912
    • X. Li, L. Li, H. Lu, and Z. Liang Partial volume segmentation of brain magnetic resonance images based on maximum a posteriori probability Med. Phys. 32 2005 2337 2345 (Pubitemid 41023193)
    • (2005) Medical Physics , vol.32 , Issue.7 , pp. 2337-2345
    • Li, X.1    Li, L.2    Lu, H.3    Liang, Z.4
  • 36
    • 33744548717 scopus 로고    scopus 로고
    • A hybrid region-boundary model for cerebral cortical segmentation in MRI
    • DOI 10.1016/j.compmedimag.2006.03.006, PII S0895611106000346
    • Z.Q. Yu, Y. Zhu, J. Yang, and Y.M. Zhu A hybrid region-boundary model for cerebral cortical segmentation in MRI Comput. Med. Imaging Graph. 30 2006 197 208 (Pubitemid 43817483)
    • (2006) Computerized Medical Imaging and Graphics , vol.30 , Issue.3 , pp. 197-208
    • Yu, Z.Q.1    Zhu, Y.2    Yang, J.3    Zhu, Y.M.4
  • 37
    • 38749114308 scopus 로고    scopus 로고
    • Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils
    • R.G. Boyes, J.L. Gunter, C. Frost, A.L. Janke, T. Yeatman, and D.L.G. Hill Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils NeuroImage 39 2008 1752 1762
    • (2008) NeuroImage , vol.39 , pp. 1752-1762
    • Boyes, R.G.1    Gunter, J.L.2    Frost, C.3    Janke, A.L.4    Yeatman, T.5    Hill, D.L.G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.