메뉴 건너뛰기




Volumn 5, Issue , 2011, Pages 44-71

A review of survival trees

Author keywords

Bagging; CART; Discrete time; Ensemble methods; Right censored data; Survival forest; Survival trees; Time varying covariate; Time varying effect

Indexed keywords


EID: 84857308440     PISSN: None     EISSN: 19357516     Source Type: Journal    
DOI: 10.1214/09-SS047     Document Type: Article
Times cited : (189)

References (74)
  • 1
    • 0028244077 scopus 로고
    • Tree-structured proportional hazards regression modeling
    • Ahn, H. and Loh, W.-Y. (1994). Tree-Structured Proportional Hazards Regression Modeling. Biometrics 50, 471-485.
    • (1994) Biometrics , vol.50 , pp. 471-485
    • Ahn, H.1    Loh, W.-Y.2
  • 2
    • 0029420361 scopus 로고
    • Survival trees with time-dependent covariates: Application to estimating changes in the incubation period of AIDS
    • Bacchetti, P. and Segal, M. (1995). Survival Trees with Time-Dependent Covariates: Application to Estimating Changes in the Incubation Period of AIDS. Lifetime Data Analysis 1, 35-47.
    • (1995) Lifetime Data Analysis , vol.1 , pp. 35-47
    • Bacchetti, P.1    Segal, M.2
  • 5
    • 80053998602 scopus 로고    scopus 로고
    • Discrete-time survival trees and forests with time-varying covariates: Application to bankruptcy data
    • To appear in
    • Bou-Hamad, I., Larocque, D. and Ben-Ameur, H. (2011). Discrete-Time Survival Trees and Forests with Time-Varying Covariates: Application to Bankruptcy Data. To appear in Statistical Modeling.
    • (2011) Statistical Modeling
    • Bou-Hamad, I.1    Larocque, D.2    Ben-Ameur, H.3
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging Predictors. Machine Learning 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random Forests. Machine Learning 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0019379201 scopus 로고
    • An approach to classifying prognostic factors related to survival experience for non-hodgkin's lymphoma patients: Based on a series of 982 patients: 1967-1975
    • Ciampi, A., Bush, R. S., Gospodarowicz, M. and Till, J. E. (1981). An Approach to Classifying Prognostic Factors Related to Survival Experience for Non-Hodgkin's Lymphoma Patients: Based on a Series of 982 Patients: 1967-1975. Cancer 47, 621-627.
    • (1981) Cancer , vol.47 , pp. 621-627
    • Ciampi, A.1    Bush, R.S.2    Gospodarowicz, M.3    Till, J.E.4
  • 11
    • 46149132001 scopus 로고
    • Stratification by stepwise regression, correspondance analysis and recursive partition: A comparison of three methods of analysis for survival data with covariates
    • Ciampi, A., Thiffault, J., Nakache, J.-P. and Asselain, B. (1986). Stratification by Stepwise Regression, Correspondance Analysis and Recursive Partition: A Comparison of Three Methods of Analysis for Survival Data with Covariates. Computational Statistics & Data Analysis 4, 185-204.
    • (1986) Computational Statistics & Data Analysis , vol.4 , pp. 185-204
    • Ciampi, A.1    Thiffault, J.2    Nakache, J.-P.3    Asselain, B.4
  • 12
    • 0002589699 scopus 로고
    • Recursive partition: A versatile method for exploratory data analysis in biostatistics
    • Ciampi, A., Chang, C. H., Hogg, S. and McKinney, S. (1987). Recursive Partition: A Versatile Method for Exploratory Data Analysis in Biostatistics. Biostatistics 23-50
    • (1987) Biostatistics , pp. 23-50
    • Ciampi, A.1    Chang, C.H.2    Hogg, S.3    McKinney, S.4
  • 13
    • 0023905660 scopus 로고
    • RECPAM: A computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I. Methods and program features
    • Ciampi, A., Hogg, S. A., McKinney, S. and Thiffault, J. (1988). RECPAM: A Computer Program for Recursive Partition and Amalgamation for Censored Survival Data and Other Situations Frequently Occurring in Biostatistics. I. Methods and Program Features. Computer Methods and Programs in Biomedicine 26, 239-256.
    • (1988) Computer Methods and Programs In Biomedicine , vol.26 , pp. 239-256
    • Ciampi, A.1    Hogg, S.A.2    McKinney, S.3    Thiffault, J.4
  • 14
    • 0024791995 scopus 로고
    • RECPAM: A computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. II. Applications to Data on Small Cell Carcinoma of the Lung (SCCL)
    • Ciampi, A., Hogg, S. A., McKinney, S. and Thiffault, J. (1989). RECPAM: A Computer Program for Recursive Partition and Amalgamation for Censored Survival Data and Other Situations Frequently Occurring in Biostatistics. II. Applications to Data on Small Cell Carcinoma of the Lung (SCCL). Computer Methods and Programs in Biomedicine 30, 283-296.
    • (1989) Computer Methods and Programs In Biomedicine , vol.30 , pp. 283-296
    • Ciampi, A.1    Hogg, S.A.2    McKinney, S.3    Thiffault, J.4
  • 15
    • 0029007706 scopus 로고
    • Tree-structured prediction for censored survival data and the cox model
    • Ciampi, A., Negassa, A. and Lou, Z. (1995). Tree-Structured Prediction for Censored Survival Data and the Cox Model. Journal of Clinical Epidemiology 48, 675-689.
    • (1995) Journal of Clinical Epidemiology , vol.48 , pp. 675-689
    • Ciampi, A.1    Negassa, A.2    Lou, Z.3
  • 16
    • 0024791995 scopus 로고
    • RECPAM: A computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. II. Applications to Data on Small Cell Carcinoma of the Lung (SCCL)
    • Ciampi, A., Thiffault, J. and Sagman, U. (1989). RECPAM: A Computer Program for Recursive Partition and Amalgamation for Censored Survival Data and Other Situations Frequently Occurring in Biostatistics. II. Applications to Data on Small Cell Carcinoma of the Lung (SCCL). Computer Methods and Programs in Biomedicine 30, 283-296.
    • (1989) Computer Methods and Programs In Biomedicine , vol.30 , pp. 283-296
    • Ciampi, A.1    Thiffault, J.2    Sagman, U.3
  • 17
    • 0034728359 scopus 로고    scopus 로고
    • Tree stability diagnostics and some remedies for instability
    • Dannegger, F. (2000). Tree Stability Diagnostics and Some Remedies for Instability. Statistics in Medicine 19, 475-491.
    • (2000) Statistics In Medicine , vol.19 , pp. 475-491
    • Dannegger, F.1
  • 19
    • 76749117619 scopus 로고    scopus 로고
    • An investigation of missing data methods for classification trees applied to binary response data
    • MR2591624
    • Ding, Y. and Simonoff, J. S. (2010). An Investigation of Missing Data Methods for Classification Trees Applied to Binary Response Data. Journal of Machine Learning Research, 11, 131-170.MR2591624
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 131-170
    • Ding, Y.1    Simonoff, J.S.2
  • 21
    • 58549109024 scopus 로고    scopus 로고
    • Multivariate exponential survival trees and their application to tooth prognosis
    • MR2657075
    • Fan, J., Nunn, M. E. and Su, X. (2009). Multivariate Exponential Survival Trees and Their Application to Tooth Prognosis. Computational Statistics and Data Analysis 53, 1110-1121. MR2657075
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 1110-1121
    • Fan, J.1    Nunn, M.E.2    Su, X.3
  • 22
    • 33748861409 scopus 로고    scopus 로고
    • Trees for censored survival data by goodness of split, with application to tooth prognosis
    • MR2324107
    • Fan, J., Su, X.-G., Levine, R., Nunn, M. and Leblanc, M. (2006). Trees for Censored Survival Data by Goodness of Split, with Application to Tooth Prognosis. Journal of American Statistical Association 101, 959-967.MR2324107
    • (2006) Journal of American Statistical Association , vol.101 , pp. 959-967
    • Fan, J.1    Su, X.-G.2    Levine, R.3    Nunn, M.4    Leblanc, M.5
  • 24
    • 16544382022 scopus 로고    scopus 로고
    • Identification of prognostic factors with multivariate survival data
    • MR2054888
    • Gao, F., Manatunga, A. K. and Chen, S. (2004). Identification of Prognostic Factors with Multivariate Survival Data. Computational Statistics & Data Analysis 45, 813-824. MR2054888
    • (2004) Computational Statistics & Data Analysis , vol.45 , pp. 813-824
    • Gao, F.1    Manatunga, A.K.2    Chen, S.3
  • 25
    • 84857273947 scopus 로고    scopus 로고
    • Developing multivariate survival trees with a proportonal hazards structure
    • Gao, F., Manatunga, A. K. and Chen, S. (2006). Developing Multivariate Survival Trees with a Proportonal Hazards Structure. Journal of Data Science 4, 343-356.
    • (2006) Journal of Data Science , vol.4 , pp. 343-356
    • Gao, F.1    Manatunga, A.K.2    Chen, S.3
  • 26
    • 0021875130 scopus 로고
    • Tree-structured survival analysis
    • Gordon, L. and Olshen, R. A. (1985). Tree-structured Survival Analysis. Cancer Treatment Reports 69, 1065-1069.
    • (1985) Cancer Treatment Reports , vol.69 , pp. 1065-1069
    • Gordon, L.1    Olshen, R.A.2
  • 27
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparisons of prognostic classification schemes for survival data
    • Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999). Assessment and Comparisons of Prognostic Classification Schemes for Survival Data. Statistics in Medicine 18, 2529-2545.
    • (1999) Statistics In Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 28
    • 33748186432 scopus 로고    scopus 로고
    • Logical analysis of data-an overview: From combinatorial optimization to medical applications
    • Hammer, P. L. and Bonates, T. O. (2006). Logical Analysis of Data-An Overview: From Combinatorial Optimization to Medical Applications. Annals of Operations Research 148, 203-225.
    • (2006) Annals of Operations Research , vol.148 , pp. 203-225
    • Hammer, P.L.1    Bonates, T.O.2
  • 32
    • 0032429967 scopus 로고    scopus 로고
    • Piecewise exponential survival trees with time-dependent covariates
    • Huang, X., Chen, S. and Soong, S. (1998). Piecewise Exponential Survival Trees with Time-Dependent Covariates. Biometrics, 54, 1420-1433.
    • (1998) Biometrics , vol.54 , pp. 1420-1433
    • Huang, X.1    Chen, S.2    Soong, S.3
  • 38
    • 8744279082 scopus 로고    scopus 로고
    • Alternative tree-structured survival analysis based on variance of survival time
    • Jin, H., Lu, Y., Stone, K. and Black, D. M. (2004). Alternative Tree-Structured Survival Analysis Based on Variance of Survival Time. Medical Decision Making 24, 670-680.
    • (2004) Medical Decision Making , vol.24 , pp. 670-680
    • Jin, H.1    Lu, Y.2    Stone, K.3    Black, D.M.4
  • 39
    • 0037196187 scopus 로고    scopus 로고
    • Residual-based tree-structured survival analysis
    • Keles, S. and Segal, M. R. (2002). Residual-Based Tree-Structured Survival Analysis. Statistics in Medicine 21, 313-326.
    • (2002) Statistics In Medicine , vol.21 , pp. 313-326
    • Keles, S.1    Segal, M.R.2
  • 41
    • 33746257658 scopus 로고    scopus 로고
    • Random forests of dipolar trees for survival prediction. Artificial intelligence and soft computing - ICAISC 2006
    • Kretowska, M. (2006). Random Forests of Dipolar Trees for Survival Prediction. Artificial Intelligence and Soft Computing - ICAISC 2006, Proceedings. Lecture Notes In Computer Science 4029, 909-918.
    • (2006) Proceedings. Lecture Notes In Computer Science 4029 , pp. 909-918
    • Kretowska, M.1
  • 42
    • 77955460053 scopus 로고    scopus 로고
    • The influence of censoring for the performance of survival tree ensemble. Artificial intelligence and soft computing, Pt II - ICAISC 2010
    • Kretowska, M. (2010). The influence of Censoring for the Performance of Survival Tree Ensemble. Artificial Intelligence and Soft Computing, Pt II - ICAISC 2010, Proceedings. Lecture Notes in Artificial Intelligence 6114, 524-531.
    • (2010) Proceedings. Lecture Notes In Artificial Intelligence , vol.6114 , pp. 524-531
    • Kretowska, M.1
  • 43
    • 49549124272 scopus 로고    scopus 로고
    • Logical analysis of survival data: Prognostic survival models by detecting high-degree interactions in right-censored data
    • Kronek, L. P., and Reddy, A. (2008). Logical Analysis of Survival Data: Prognostic Survival Models by Detecting High-Degree Interactions in Right-Censored Data. Bioinformatics 24, 248-253.
    • (2008) Bioinformatics , vol.24 , pp. 248-253
    • Kronek, L.P.1    Reddy, A.2
  • 44
    • 10944226603 scopus 로고    scopus 로고
    • Assessment of optimal selected prognostic factors
    • MR2079857
    • Lausen, B., Hothorn, T., Bretz, F. and Schumacher, M. (2004). Assessment of Optimal Selected Prognostic Factors. Biometrical Journal 46, 364-374. MR2079857
    • (2004) Biometrical Journal , vol.46 , pp. 364-374
    • Lausen, B.1    Hothorn, T.2    Bretz, F.3    Schumacher, M.4
  • 45
    • 0026770594 scopus 로고
    • Relative risk trees for censored survival data
    • LeBlanc, M. and Crowley, J. (1992). Relative Risk Trees for Censored Survival Data. Biometrics 48, 411-425.
    • (1992) Biometrics , vol.48 , pp. 411-425
    • Leblanc, M.1    Crowley, J.2
  • 48
    • 0041061577 scopus 로고
    • Survival modeling through recursive stratification
    • Loh, W-Y. (1991). Survival Modeling Through Recursive Stratification. Computational Statistics and Data Analysis 12, 295-313.
    • (1991) Computational Statistics and Data Analysis , vol.12 , pp. 295-313
    • Loh, W.-Y.1
  • 49
    • 0020960517 scopus 로고
    • Prognostic factors and risk groups: Some results given by using an algorithm suitable for censored survival data
    • Marubini, E., Morabito, A. and Valsecchi, M. G. (1983). Prognostic Factors and Risk Groups: Some Results Given by Using an Algorithm Suitable for Censored Survival Data. Statistics in Medicine 2, 295-303.
    • (1983) Statistics In Medicine , vol.2 , pp. 295-303
    • Marubini, E.1    Morabito, A.2    Valsecchi, M.G.3
  • 50
    • 23744457899 scopus 로고    scopus 로고
    • Tree-based multivariate regression and density estimation with right-censored data
    • MR2064940
    • Molinaro, A. M., Dudoit, S. and van der Laan, M. J. (2004). Tree-based Multivariate Regression and Density Estimation with Right-censored Data. Journal of Multivariate Analysis 90, 154-177.MR2064940
    • (2004) Journal of Multivariate Analysis , vol.90 , pp. 154-177
    • Molinaro, A.M.1    Dudoit, S.2    van der Laan, M.J.3
  • 52
    • 0034349502 scopus 로고    scopus 로고
    • Tree-structured prognostic classification for censored survival data: Validation of computationally inexpensive model selection criteria
    • MR1815167
    • Negassa, A., Ciampi, A., Abrahamowicz, M., Shapiro, S. and Boivin, J.-F. (2000). Tree-Structured Prognostic Classification for Censored Survival Data: Validation of Computationally Inexpensive Model Selection Criteria. Journal of Statistical Computation and Simulation 67, 289-318.MR1815167
    • (2000) Journal of Statistical Computation and Simulation , vol.67 , pp. 289-318
    • Negassa, A.1    Ciampi, A.2    Abrahamowicz, M.3    Shapiro, S.4    Boivin, J.-F.5
  • 53
    • 21644435923 scopus 로고    scopus 로고
    • Tree-structured subgroup analysis for censored survival data: Validation of computationally inexpensive model selection criteria
    • MR2147555
    • Negassa, A., Ciampi, A., Abrahamowicz, M., Shapiro, S. and Boivin, J.-F. (2005) Tree-Structured Subgroup Analysis for Censored Survival Data: Validation of Computationally Inexpensive Model Selection Criteria. Statistics and Computing 15, 231-239.MR2147555
    • (2005) Statistics and Computing , vol.15 , pp. 231-239
    • Negassa, A.1    Ciampi, A.2    Abrahamowicz, M.3    Shapiro, S.4    Boivin, J.-F.5
  • 55
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
    • R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
    • (2010) R: A Language and Environment For Statistical Computing
  • 59
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • MR2744304
    • Rokach, L. (2008). Taxonomy for Characterizing Ensemble Methods in Classification Tasks: A Review and Annotated Bibliography. Computational Statistics and Data Analysis 53, 4046-4072.MR2744304
    • (2008) Computational Statistics and Data Analysis , vol.53 , pp. 4046-4072
    • Rokach, L.1
  • 60
    • 0033273293 scopus 로고    scopus 로고
    • Regression trees for survival data - an approach to select discontinuous split points by rank statistics
    • MR1747521
    • Schlittgen, R. (1999). Regression Trees for Survival Data - an Approach to Select Discontinuous Split Points by Rank Statistics. Biometrical Journal 41, 943-954.MR1747521
    • (1999) Biometrical Journal , vol.41 , pp. 943-954
    • Schlittgen, R.1
  • 61
    • 0023942063 scopus 로고
    • Regression trees for censored data
    • Segal, M. R. (1988). Regression Trees for Censored Data. Biometrics 44, 35-48.
    • (1988) Biometrics , vol.44 , pp. 35-48
    • Segal, M.R.1
  • 63
    • 70649114623 scopus 로고    scopus 로고
    • Navigating random forests and related advances in algorithmic modeling
    • MR2556872
    • Siroky, D.S. (2009). Navigating Random Forests and Related Advances in Algorithmic Modeling. Statistics Surveys 3, 147-163.MR2556872
    • (2009) Statistics Surveys , vol.3 , pp. 147-163
    • Siroky, D.S.1
  • 64
    • 1642395595 scopus 로고    scopus 로고
    • Multivariate survival trees: A maximum likelihood approach based on frailty models
    • MR2043623
    • Su, X. and Fan, J. (2004).Multivariate Survival Trees: A Maximum Likelihood Approach Based on Frailty Models. Biometrics 60, 93-99.MR2043623
    • (2004) Biometrics , vol.60 , pp. 93-99
    • Su, X.1    Fan, J.2
  • 65
    • 26644459261 scopus 로고    scopus 로고
    • Tree-augmented cox proportional hazards models
    • Su, X. and Tsai, C.-L. (2005). Tree-augmented Cox Proportional Hazards Models. Biostatistics 6, 486-499.
    • (2005) Biostatistics , vol.6 , pp. 486-499
    • Su, X.1    Tsai, C.-L.2
  • 66
    • 77956890008 scopus 로고
    • Martingale-based residuals for survival models
    • MR1049416
    • Therneau, T., Grambsch, P. and Fleming, T. (1990). Martingale-Based Residuals for Survival Models. Biometrika 77, 147-160.MR1049416
    • (1990) Biometrika , vol.77 , pp. 147-160
    • Therneau, T.1    Grambsch, P.2    Fleming, T.3
  • 67
    • 84857297979 scopus 로고    scopus 로고
    • rpart: Recursive Partitioning. R package version 3.1-46
    • Therneau, T. M. and Atkinson, B. (2010). R port by Brian Ripley. rpart: Recursive Partitioning. R package version 3.1-46. http://CRAN.Rproject.org/package=rpart.
    • (2010) R Port By Brian Ripley
    • Therneau, T.M.1    Atkinson, B.2
  • 68
    • 34247855797 scopus 로고    scopus 로고
    • An integrated tree-based classification approach to prognostic grouping with application to localized melanoma patients
    • MR2370755
    • Tsai, C., Chen, D.-T., Chen, J., Balch, C. M., Thompson, J. and Soong, S.-J. (2007). An Integrated Tree-Based Classification Approach to Prognostic Grouping with Application to Localized Melanoma Patients. Journal of Biopharmaceutical Statistics 17, 445-460. MR2370755
    • (2007) Journal of Biopharmaceutical Statistics , vol.17 , pp. 445-460
    • Tsai, C.1    Chen, D.-T.2    Chen, J.3    Balch, C.M.4    Thompson, J.5    Soong, S.-J.6
  • 69
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • Verikas, A., Gelzinis, A. and Bacauskiene, M. (2011). Mining Data With Random Forests: A Survey and Results of New Tests. Pattern Recognition 44, 330-349.
    • (2011) Pattern Recognition , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 70
    • 78649638493 scopus 로고    scopus 로고
    • A stochastic multiple imputation algorithm for missing covariate data in tree-structured survival analysis
    • Wallace, M. L., Anderson, S. J. and Mazumdar, S. (2010). A Stochastic Multiple Imputation Algorithm for Missing Covariate Data in Tree-Structured Survival Analysis. Statistics in Medicine 29, 3004-3016.
    • (2010) Statistics In Medicine , vol.29 , pp. 3004-3016
    • Wallace, M.L.1    Anderson, S.J.2    Mazumdar, S.3
  • 71
    • 0034973167 scopus 로고    scopus 로고
    • Survival analysis with time-varying relative risks: A tree-based approach
    • Xu, R. and Adak, S. (2001). Survival Analysis with Time-Varying Relative Risks: A Tree-Based Approach. Methods of information in medicine 40, 141-147.
    • (2001) Methods of Information In Medicine , vol.40 , pp. 141-147
    • Xu, R.1    Adak, S.2
  • 72
    • 0035989804 scopus 로고    scopus 로고
    • Survival analysis with time-varying regression effects using a tree-based approach
    • MR1908170
    • Xu, R. and Adak, S. (2002). Survival Analysis with Time-Varying Regression Effects Using a Tree-Based Approach. Biometrics 58, 305-315.MR1908170
    • (2002) Biometrics , vol.58 , pp. 305-315
    • Xu, R.1    Adak, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.