-
2
-
-
23144432251
-
-
(Cambridge University Press, Cambridge, England).
-
V. A. Parsegian, Van der Waals Forces (Cambridge University Press, Cambridge, England, 2005).
-
(2005)
Van der Waals Forces
-
-
Parsegian, V.A.1
-
4
-
-
68649124599
-
-
10.1103/PhysRevLett.103.040401
-
M. T. H. Reid, A. W. Rodriguez, J. White, and S. G. Johnson, Phys. Rev. Lett. 103, 040401 (2009). 10.1103/PhysRevLett.103.040401
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 040401
-
-
Reid, M.T.H.1
Rodriguez, A.W.2
White, J.3
Johnson, S.G.4
-
5
-
-
33746648136
-
-
10.1103/PhysRevD.74.045002
-
H. Gies and K. Klingmüller, Phys. Rev. D 74, 045002 (2006). 10.1103/PhysRevD.74.045002
-
(2006)
Phys. Rev. D
, vol.74
, pp. 045002
-
-
Gies, H.1
Klingmüller, K.2
-
7
-
-
0010461312
-
-
10.1007/BF01433225
-
B. Derjaguin, Kolloid Z. 69, 155 (1934). 10.1007/BF01433225
-
(1934)
Kolloid Z.
, vol.69
, pp. 155
-
-
Derjaguin, B.1
-
8
-
-
34548147211
-
-
10.1103/PhysRevLett.99.080401
-
A. Rodriguez, M. Ibanescu, D. Iannuzzi, F. Capasso, J. D. Joannopoulos, and S. G. Johnson, Phys. Rev. Lett. 99, 80401 (2007). 10.1103/PhysRevLett.99. 080401
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 80401
-
-
Rodriguez, A.1
Ibanescu, M.2
Iannuzzi, D.3
Capasso, F.4
Joannopoulos, J.D.5
Johnson, S.G.6
-
9
-
-
84857279684
-
-
The general case of two curved surfaces can always be reduced to this one, by exploiting the tilt invariance of the Casimir energy (Ref.).
-
The general case of two curved surfaces can always be reduced to this one, by exploiting the tilt invariance of the Casimir energy (Ref.).
-
-
-
-
11
-
-
84857307870
-
Casimir forces beyond the proximity approximation
-
e-print arXiv:1110.1082, (in print).
-
G. Bimonte, T. Emig, R. L. Jaffe, and M. Kardar, e-print arXiv:1110.1082, Casimir forces beyond the proximity approximation, Europhys. Lett. (in print).
-
Europhys. Lett.
-
-
Bimonte, G.1
Emig, T.2
Jaffe, R.L.3
Kardar, M.4
-
12
-
-
84857341391
-
-
To be precise, consider the one-parameter family of profiles H (x) = H ( x), [0, 1] possessing finite derivatives uto second order. For small , the leading term F PFA [H] in Eq. is generically of order 1 / 2 (for bi-directionally curved surfaces), while the first correction proportional to (∇ H) 2 is of order 0. Then, for the gradient expansion in Eq. to be valid, we must have (2) [H ] = o ( 0), where o (x n) denotes an infinitesimal of order higher than n, such that lim x → 0 o (x n) / x n = 0.
-
To be precise, consider the one-parameter family of profiles H (x) = H ( x), [0, 1] possessing finite derivatives up to second order. For small, the leading term F PFA [H] in Eq. is generically of order 1 / 2 (for bi-directionally curved surfaces), while the first correction proportional to (∇ H) 2 is of order 0. Then, for the gradient expansion in Eq. to be valid, we must have (2) [H ] = o ( 0), where o (x n) denotes an infinitesimal of order higher than n, such that lim x → 0 o (x n) / x n = 0.
-
-
-
-
13
-
-
70449731177
-
-
10.1103/PhysRevD.80.085021
-
S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. D 80, 085021 (2009). 10.1103/PhysRevD.80.085021
-
(2009)
Phys. Rev. D
, vol.80
, pp. 085021
-
-
Rahi, S.J.1
Emig, T.2
Graham, N.3
Jaffe, R.L.4
Kardar, M.5
-
14
-
-
84857259502
-
-
We normalize the waves k, Q as in Ref.. Note though that the choice of normalization is irrelevant for the purpose of evaluating the trace in Eq..
-
We normalize the waves k, Q as in Ref.. Note though that the choice of normalization is irrelevant for the purpose of evaluating the trace in Eq..
-
-
-
-
15
-
-
34250656213
-
-
10.1088/0959-7174/4/3/008
-
A. Voronovich, Waves Random Media 4, 337 (1994). 10.1088/0959-7174/4/3/ 008
-
(1994)
Waves Random Media
, vol.4
, pp. 337
-
-
Voronovich, A.1
-
17
-
-
34548157701
-
-
10.1140/epjc/s10052-007-0346-z
-
R. S. Decca, D. Lopez, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, Eur. Phys. J. C 51, 963 (2007). 10.1140/epjc/s10052-007- 0346-z
-
(2007)
Eur. Phys. J. C
, vol.51
, pp. 963
-
-
Decca, R.S.1
Lopez, D.2
Fischbach, E.3
Klimchitskaya, G.L.4
Krause, D.E.5
Mostepanenko, V.M.6
-
18
-
-
84921916968
-
-
edited by M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko (Oxford University Press, New York).
-
Advances in the Casimir Effect, edited by, M. Bordag, G. L. Klimchitskaya, U. Mohideen, and, V. M. Mostepanenko, (Oxford University Press, New York, 2009).
-
(2009)
Advances in the Casimir Effect
-
-
-
20
-
-
75849149900
-
-
10.1103/PhysRevLett.104.040403
-
A. C. Canaguier, P. A. M. Neto, A. Lambrecht, and S. Renaud, Phys. Rev. Lett. 104, 040403 (2010). 10.1103/PhysRevLett.104.040403
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 040403
-
-
Canaguier, A.C.1
Neto, P.A.M.2
Lambrecht, A.3
Renaud, S.4
-
21
-
-
67249100239
-
-
10.1103/PhysRevLett.102.230404
-
A. C. Canaguier, P. A. M. Neto, I. Cavero-Pelaez, A. Lambrecht, and S. Reynaud, Phys. Rev. Lett. 102, 230404 (2009). 10.1103/PhysRevLett.102.230404
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 230404
-
-
Canaguier, A.C.1
Neto, P.A.M.2
Cavero-Pelaez, I.3
Lambrecht, A.4
Reynaud, S.5
-
22
-
-
66049134447
-
-
10.1103/PhysRevA.79.042107
-
G. Bimonte, Phys. Rev. A 79, 042107 (2009). 10.1103/PhysRevA.79.042107
-
(2009)
Phys. Rev. A
, vol.79
, pp. 042107
-
-
Bimonte, G.1
-
23
-
-
33846682588
-
-
10.1103/PhysRevLett.98.050403
-
D. E. Krause, R. S. Decca, D. Lopez, and E. Fischbach, Phys. Rev. Lett. 98, 050403 (2007). 10.1103/PhysRevLett.98.050403
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 050403
-
-
Krause, D.E.1
Decca, R.S.2
Lopez, D.3
Fischbach, E.4
-
24
-
-
38849199590
-
-
10.1103/PhysRevB.77.035439
-
V. B. Svetovoy, P. J. van Zwol, G. Palasantzas, and J. Th. M. De Hosson, Phys. Rev. B 77, 035439 (2008). 10.1103/PhysRevB.77.035439
-
(2008)
Phys. Rev. B
, vol.77
, pp. 035439
-
-
Svetovoy, V.B.1
Van Zwol, P.J.2
Palasantzas, G.3
De Hosson, J.Th.M.4
|