-
1
-
-
84892261695
-
Agriculture monitoring
-
Springer
-
H.G. Goh, M.L. Sim, and H.T. Ewe, "Agriculture monitoring," inSensor Networks and Corifguration, Springer, 2007, pp. 439-462.
-
(2007)
Sensor Networks and Corifguration
, pp. 439-462
-
-
Goh, H.G.1
Sim, M.L.2
Ewe, H.T.3
-
2
-
-
49749114376
-
Anomaly detection in wireless sensor networks
-
Aug
-
S. Rajasegarar, C. Leckie, and M. Palaniswami, "Anomaly Detection in Wireless Sensor Networks," inIEEE Wireless Communications, vol. 15, No. 4,Aug. 2008, pp. 34-40.
-
(2008)
IEEE Wireless Communications
, vol.15
, Issue.4
, pp. 34-40
-
-
Rajasegarar, S.1
Leckie, C.2
Palaniswami, M.3
-
3
-
-
78650777207
-
Anomaly detection in wireless sensor networks using self-organizing map and wavelets
-
Japan, Oct.
-
S. Siripanadom, W. Hattagam, and N. Teaumroong, "Anomaly Detection in Wireless Sensor Networks using Self-Organizing Map and Wavelets. " inThe 9th Int. Conl on Applied Computer Science (WSEAS), Japan, Oct., 2010, pp. 291-297.
-
(2010)
The 9th Int. Conl on Applied Computer Science (WSEAS)
, pp. 291-297
-
-
Siripanadom, S.1
Hattagam, W.2
Teaumroong, N.3
-
4
-
-
84857335942
-
Anomaly detection in wireless sensor networks using self-organizing map and wavelets
-
Dec.
-
S. Siripanadom, W. Hattagam, and N. Teaumroong, "Anomaly Detection in Wireless Sensor Networks using Self-Organizing Map and Wavelets. " in The Int. Journal of Communications, Vol. 4, No. 3, Dec., 2010, pp. 74-83.
-
(2010)
The Int. Journal of Communications
, vol.4
, Issue.3
, pp. 74-83
-
-
Siripanadom, S.1
Hattagam, W.2
Teaumroong, N.3
-
5
-
-
77954024153
-
A model based on hybrid support vector machine and self-organizing map for anomaly detection
-
Apr 12-14
-
F. Wang, Y. Qian, Y. Dai, and Z. Wang, "A Model Based on Hybrid Support Vector Machine and Self-Organizing Map for Anomaly Detection," in Proc. 20iO Int. Corifon Communications and Mobile Computing (CMC),Vol. 1, Apr 12-14, 2010, pp. 97-101.
-
(2010)
Proc. 20iO Int. Corifon Communications and Mobile Computing (CMC)
, vol.1
, pp. 97-101
-
-
Wang, F.1
Qian, Y.2
Dai, Y.3
Wang, Z.4
-
6
-
-
38549109147
-
Quarter sphere based distributed anomaly detection in wireless sensor networks
-
Jun 24-28
-
S. Rajasegarar, C. Leckie, M. Palaniswami, and lC. Bezdek, "Quarter Sphere Based Distributed Anomaly Detection in Wireless Sensor Networks, "in Proc. IEEE Int. Conl on Communications 2007,Jun 24-28,2007, pp. 3864-3869.
-
(2007)
Proc. IEEE Int. Conl on Communications 2007
, pp. 3864-3869
-
-
Rajasegarar, S.1
Leckie, C.2
Palaniswami, M.3
Bezdek, C.4
-
7
-
-
33745162710
-
Intrusion detection in unlabeled data with quarter sphere support vector machines
-
P. Laskov, C. Schafer, and I. Kotenko, "Intrusion detection in unlabeled data with quarter sphere support vector machines," inDetection of Intrusions and Malware & Vulnerability Assessment (DIMVA), Vol. 27, No. 4, 2004, pp. 228-236.
-
(2004)
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)
, vol.27
, Issue.4
, pp. 228-236
-
-
Laskov, P.1
Schafer, C.2
Kotenko, I.3
-
8
-
-
70350130114
-
Adaptive and online oneclass support vector machine-based outlier detection techniques for wireless sensor networks
-
May 26-29
-
Y. Zhang, N. Meratnia, and P. Havinga, "Adaptive and Online OneClass Support Vector Machine-based Outlier Detection Techniques for Wireless Sensor Networks," in Proc. 2009 into Conl on Advanced Iriformation Networking and Applications Workshops, May 26-29, 2009, pp. 990-995.
-
(2009)
Proc. 2009 into Conl on Advanced Iriformation Networking and Applications Workshops
, pp. 990-995
-
-
Zhang, Y.1
Meratnia, N.2
Havinga, P.3
-
9
-
-
77955684744
-
Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor network
-
Sep.
-
S. Rajasegarar, C. Leckie, lC. Bezdek, and M. Palaniswami, "Centered Hyperspherical and Hyperellipsoidal One-Class Support Vector Machines for Anomaly Detection in Sensor Network," in Proc. iEEE Transactions on Information Forensics and Security, Vol. 5, No. 3, Sep. 2010, pp. 518-533.
-
(2010)
Proc IEEE Transactions on Information Forensics and Security
, vol.5
, Issue.3
, pp. 518-533
-
-
Rajasegarar, S.1
Leckie, C.2
Bezdek, C.3
Palaniswami, M.4
-
10
-
-
0942266514
-
Support vector data description
-
D. M. l Tax, and R. P. W. Duin, "Support vector data description," inMachine Learning, Vol. 54, No. 1, 2004, pp. 45-66.
-
(2004)
Machine Learning
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.L.1
Duin, R.P.W.2
-
11
-
-
77954025800
-
Sensor faults: Detection methods and prevalence in real-world datasets
-
A.B. Shanna, L. Golubchik, and R. Govindan, "Sensor Faults: Detection Methods and Prevalence in Real-World Datasets," in Proc. Transactions on Sensor Networks, vol. 5,2010, pp. 1-34.
-
(2010)
Proc. Transactions on Sensor Networks
, vol.5
, pp. 1-34
-
-
Shanna, A.B.1
Golubchik, L.2
Govindan, R.3
-
12
-
-
34250663760
-
-
INTEL dataset. [Online]
-
The Intel Lab. (2004). INTEL dataset. [Online]. Available: http://berkeley.intel-research.netilabdataJ
-
(2004)
The Intel Lab
-
-
-
13
-
-
84857266420
-
-
The SensorScope Lausanne Urban Canopy Experiment (LUCE) Project [Online]
-
The SensorScope Lausanne Urban Canopy Experiment (LUCE) Project. (2006). SENSORSCOPE dataset. [Online]. Available: http://sensorscope.eptl.ch/index. php/LUCE.
-
(2006)
SENSORSCOPE Dataset
-
-
-
14
-
-
84857261805
-
-
NAMOSdata. [Online]
-
Network Aquatic Microbial Observing System. (2006). NAMOSdata. [Online]. Available: http://robotics.usc.edul-namos/dataJjr aug-06/
-
(2006)
Network Aquatic Microbial Observing System
-
-
|