-
1
-
-
57049181957
-
Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels
-
Chou, C.J., F.E. Jenney Jr., M.W.W. Adams, and R.M. Kelly. 2008. Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels. Metabolic Engineering 10:394-404, http://dx.doi.org/10.1016/j.ymben.2008.06.007.
-
(2008)
Metabolic Engineering
, vol.10
, pp. 394-404
-
-
Chou, C.J.1
Jenney Jr., F.E.2
Adams, M.W.W.3
Kelly, R.M.4
-
2
-
-
54349124054
-
Scaling up microbial fuel cells
-
Dewan, A., H. Beyenal, and Z. Lewandowski. 2008. Scaling up microbial fuel cells. Environmental Science and Technology 42:7,643-7,648, http://dx.doi.org/10.1021/es800775d.
-
(2008)
Environmental Science and Technology
, vol.42
, pp. 7643-7648
-
-
Dewan, A.1
Beyenal, H.2
Lewandowski, Z.3
-
3
-
-
0022445886
-
Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C
-
Fiala, G., and K.O. Stetter. 1986. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Archives of Microbiology 145:56-61, http://dx.doi.org/10.1007/BF00413027.
-
(1986)
Archives of Microbiology
, vol.145
, pp. 56-61
-
-
Fiala, G.1
Stetter, K.O.2
-
4
-
-
77953160485
-
Microbial fuel cells, a current review
-
Franks, A.E., and K.P. Nevin. 2010. Microbial fuel cells, a current review. Energies 3:899-919, http://dx.doi.org/10.3390/en3050899.
-
(2010)
Energies
, vol.3
, pp. 899-919
-
-
Franks, A.E.1
Nevin, K.P.2
-
5
-
-
84881551157
-
Fundamentals of sediment-hosted microbial fuel cells
-
First Edition. K. Raebey, ed, IWA publishing, London
-
Girguis, P.R., M.E. Nielsen, and C.E. Reimers. 2009. Fundamentals of sediment-hosted microbial fuel cells. Pp. 327-345 in Bioelectrochemical Systems, First Edition. K. Raebey, ed, IWA publishing, London.
-
(2009)
Bioelectrochemical Systems
, pp. 327-345
-
-
Girguis, P.R.1
Nielsen, M.E.2
Reimers, C.E.3
-
6
-
-
79957862655
-
Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/ temperature sensor system
-
Gong, Y., S.E. Radachowsky, M. Wolf, M.E. Nielsen, P.R. Girguis, and C.E. Reimers. 2011. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/ temperature sensor system. Environmental Science and Technology 45:5,047-5,053, http://dx.doi.org/ 10.1021/es104383q.
-
(2011)
Environmental Science and Technology
, vol.45
, pp. 5047-5053
-
-
Gong, Y.1
Radachowsky, S.E.2
Wolf, M.3
Nielsen, M.E.4
Girguis, P.R.5
Reimers, C.E.6
-
7
-
-
79953759834
-
Powering microbes with electricity: Direct electron transfer from electrodes to microbes
-
Lovley, D.R. 2010. Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environmental Microbiology Reports 3:27-35, http://dx.doi.org/10.1111/j.1758-2229.2010.00211.x.
-
(2010)
Environmental Microbiology Reports
, vol.3
, pp. 27-35
-
-
Lovley, D.R.1
-
8
-
-
0024191542
-
Novel mode of microbial energy metabolism: Organiccarbon oxidation coupled to dissimilatory reduction of iron or manganese
-
Lovley, D.R., and E.J.P. Phillips. 1988. Novel mode of microbial energy metabolism: Organiccarbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology 54:1,472-1,480.
-
(1988)
Applied and Environmental Microbiology
, vol.54
, pp. 1472-1480
-
-
Lovley, D.R.1
Phillips, E.J.P.2
-
9
-
-
72249109158
-
Sustainable energy from deep ocean cold seeps
-
Nielsen, M.E., C.E. Reimers, H.K. White, S. Sharma, and P.R. Girguis. 2008. Sustainable energy from deep ocean cold seeps. Energy and Environmental Science 1:584-593, http://dx.doi.org/10.1039/B811899J.
-
(2008)
Energy and Environmental Science
, vol.1
, pp. 584-593
-
-
Nielsen, M.E.1
Reimers, C.E.2
White, H.K.3
Sharma, S.4
Girguis, P.R.5
-
10
-
-
79958232398
-
Production of hydrogen from α-1,4- and β-1,4-linked saccharides by marine hyperthermophilic archaea
-
Oslowski, D.M., J.H. Jung, D.H. Seo, C.S. Park, and J.F. Holden. 2011. Production of hydrogen from α-1,4- and β-1,4-linked saccharides by marine hyperthermophilic archaea. Applied and Environmental Microbiology 77:3,169-3,173, http://dx.doi.org/10.1128/AEM.01366-10.
-
(2011)
Applied and Environmental Microbiology
, vol.77
, pp. 3169-3173
-
-
Oslowski, D.M.1
Jung, J.H.2
Seo, D.H.3
Park, C.S.4
Holden, J.F.5
-
11
-
-
0003932256
-
Electrical effects accompanying the decomposition of organic compounds
-
Potter, M.C. 1911. Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B 84:260-276, http://dx.doi.org/10.1098/rspb.1915.0030.
-
(1911)
Proceedings of the Royal Society B
, vol.84
, pp. 260-276
-
-
Potter, M.C.1
-
12
-
-
77957147094
-
Microbial electrosynthesis-Revisiting the electrical route for microbial production
-
Rabaey, K., and R.A. Rozendal. 2011. Microbial electrosynthesis-Revisiting the electrical route for microbial production. Nature Reviews Microbiology 8:706-716, http://dx.doi.org/10.1038/nrmicro2422.
-
(2011)
Nature Reviews Microbiology
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
13
-
-
33744471906
-
Microbial fuel cell energy from an ocean cold seep
-
Reimers, C.E., P.R. Girguis, H.A. Stecher III, L.M. Tender, N. Ryckelynck, and P. Whaling. 2006. Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123-136, http://dx.doi.org/10.1111/j.1472-4669.2006.00071.x.
-
(2006)
Geobiology
, vol.4
, pp. 123-136
-
-
Reimers, C.E.1
Girguis, P.R.2
Stecher III, H.A.3
Tender, L.M.4
Ryckelynck, N.5
Whaling, P.6
-
14
-
-
77949873264
-
Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives
-
Singh, A., D. Pant, N.E. Korres, A.-S. Nizami, S. Prasad, and J.D. Murphy. 2010. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource Technology 101(3):5,003-5,012.
-
(2010)
Bioresource Technology
, vol.101
, Issue.3
, pp. 5003-5012
-
-
Singh, A.1
Pant, D.2
Korres, N.E.3
Nizami, A.-S.4
Prasad, S.5
Murphy, J.D.6
-
15
-
-
84857297313
-
Chemoautotrophy at deep-sea vents: Past, present, and future
-
Sievert, S.M., and C. Vetriani. 2012. Chemoautotrophy at deep-sea vents: Past, present, and future. Oceanography 25(1):218-233, http://dx.doi.org/10.5670/oceanog.2012.21.
-
(2012)
Oceanography
, vol.25
, Issue.1
, pp. 218-233
-
-
Sievert, S.M.1
Vetriani, C.2
-
16
-
-
0027909730
-
A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth
-
Tijhuis, L., M.C.M. van Loosdrecht, and J.J. Heijnen. 1993. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnology and Bioengineering 42:509-519, http://dx.doi.org/10.1002/bit.260420415.
-
(1993)
Biotechnology and Bioengineering
, vol.42
, pp. 509-519
-
-
Tijhuis, L.1
van Loosdrecht, M.C.M.2
Heijnen, J.J.3
-
17
-
-
67549151044
-
Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells: Examining the relationship between power production, geochemistry and microbial ecology
-
White, H.K., C.E. Reimers, E.E. Cordes, G.F. Dilly, and P.R. Girguis. 2009. Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells: Examining the relationship between power production, geochemistry and microbial ecology. The ISME Journal 3:635-646, http://dx.doi.org/10.1038/ismej.2009.12.
-
(2009)
The ISME Journal
, vol.3
, pp. 635-646
-
-
White, H.K.1
Reimers, C.E.2
Cordes, E.E.3
Dilly, G.F.4
Girguis, P.R.5
|