메뉴 건너뛰기




Volumn 1, Issue , 2008, Pages 362-371

Bayesian challenges in Integrated Catchment modelling

Author keywords

Bayesian networks; Decision support for natural resource management; Integrated catchment management

Indexed keywords

AUTOMATIC TELLER MACHINES; BAYESIAN NETWORKS; CATCHMENTS; COMPLEX NETWORKS; COMPUTATIONAL COMPLEXITY; DECISION SUPPORT SYSTEMS; ECOLOGY; ENVIRONMENTAL MANAGEMENT; ENVIRONMENTAL TECHNOLOGY; INFORMATION MANAGEMENT; KNOWLEDGE MANAGEMENT; NATURAL RESOURCES; NATURAL RESOURCES MANAGEMENT; RESOURCE ALLOCATION; RUNOFF;

EID: 84857234665     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (27)
  • 1
    • 1542548177 scopus 로고    scopus 로고
    • A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis
    • DOI 10.1016/j.ecolmodel.2003.08.020, PII S0304380003003958
    • Borsuk, M. E., C. A. Stow, and K. H. Reckhow, A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 173(2-3), 219-239,2004. (Pubitemid 38334738)
    • (2004) Ecological Modelling , vol.173 , Issue.2-3 , pp. 219-239
    • Borsuk, M.E.1    Stow, C.A.2    Reckhow, K.H.3
  • 2
    • 33947728908 scopus 로고    scopus 로고
    • Bayesian Networks and participatory modelling in water resource management
    • Castelletti, A., and R. Soncini-Sessa, Bayesian Networks and participatory modelling in water resource management. Environmental Modelling & Software, 22(8), 1075,2007.
    • (2007) Environmental Modelling & Software , vol.22 , Issue.8 , pp. 1075
    • Castelletti, A.1    Soncini-Sessa, R.2
  • 4
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper, G. F., The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42(2-3), 393-405,1990.
    • (1990) Artificial Intelligence , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 5
    • 50149101533 scopus 로고    scopus 로고
    • Generating conditional probabilities for Bayesian networks: Easing the knowledge acquisition problem
    • Das, B., Generating Conditional Probabilities for Bayesian Networks: Easing the Knowledge Acquisition Problem. CoRR, cs.AI/0411034,2004.
    • (2004) CoRR, cs.AI/0411034
    • Das, B.1
  • 6
    • 33749260477 scopus 로고    scopus 로고
    • Decision Support Systems for implementing the European Water Framework Directive: The MULINO approach
    • Giupponi, C., Decision Support Systems for implementing the European Water Framework Directive: The MULINO approach. Environmental Modelling & Software, 22(2), 248,2007.
    • (2007) Environmental Modelling & Software , vol.22 , Issue.2 , pp. 248
    • Giupponi, C.1
  • 7
    • 34548849757 scopus 로고    scopus 로고
    • A practical approach to dynamic Bayesian networks
    • Paper presented at the, Adelaide, Australia
    • Gossink, D., M. Shahin, J. Lemmer, and I. Fuss, A practical approach to Dynamic Bayesian Networks. Paper presented at the Information, Decision and Control, Adelaide, Australia,2007.
    • (2007) Information, Decision and Control
    • Gossink, D.1    Shahin, M.2    Lemmer, J.3    Fuss, I.4
  • 18
    • 0015482049 scopus 로고
    • On the criteria to be used in decomposing systems into modules
    • Parnas, D. L., On the criteria to be used in decomposing systems into modules. Communications of the ACM, 15(12), 1052-1058,1972.
    • (1972) Communications of the ACM , vol.15 , Issue.12 , pp. 1052-1058
    • Parnas, D.L.1
  • 20
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure results
    • Robins, J., A new approach to causal inference in mortality studies with sustained exposure results. Mathematical Modelling, 7, 1393-1512,1986.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 21
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin, D., Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34-58,1978.
    • (1978) Annals of Statistics , vol.6 , pp. 34-58
    • Rubin, D.1
  • 25
    • 56249146298 scopus 로고    scopus 로고
    • A Bayesian network based framework for multi-criteria decision making
    • Paper presented at the, Whistler, British Columbia, Canada.
    • Watthayu, W., and Y. Peng, A Bayesian network based framework for multi-criteria decision making. Paper presented at the MCDM 2004, Whistler, British Columbia, Canada.,2004.
    • (2004) MCDM 2004
    • Watthayu, W.1    Peng, Y.2
  • 26
    • 0001783333 scopus 로고
    • Optimization of inter-subnet belief updating in multiply sectioned Bayesian networks
    • Paper presented at the, Montreal
    • Xiang, Y., Optimization of inter-subnet belief updating in multiply sectioned Bayesian networks. Paper presented at the Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal,1995.
    • (1995) Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence
    • Xiang, Y.1
  • 27
    • 0033916466 scopus 로고    scopus 로고
    • Belief updating in multiply sectioned Bayesian networks without repeated local propagations
    • Xiang, Y., Belief updating in multiply sectioned Bayesian networks without repeated local propagations. International Journal of Approximate Reasoning, 23(1), 1,2000.
    • (2000) International Journal of Approximate Reasoning , vol.23 , Issue.1 , pp. 1
    • Xiang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.