메뉴 건너뛰기




Volumn , Issue , 2011, Pages 570-576

Locality-aware reduce task scheduling for mapreduce

Author keywords

[No Author keywords available]

Indexed keywords

DATA LOCALITY; DISTRIBUTED DATA; EVALUATION RESULTS; FUNCTIONAL LANGUAGES; GOOD DATA; INPUT DATAS; LOW DEGREE; MAP TASK; MAP-REDUCE; MULTIPLE MACHINE; NETWORK TRAFFIC; OPEN SOURCE IMPLEMENTATION; PERFORMANCE DEGRADATION; PROGRAMMING MODELS; SYSTEM UTILIZATION; TASK-SCHEDULING;

EID: 84857188407     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CloudCom.2011.87     Document Type: Conference Paper
Times cited : (143)

References (26)
  • 1
    • 84857159634 scopus 로고    scopus 로고
    • "Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/.
  • 2
    • 84857153534 scopus 로고    scopus 로고
    • Variable-sized map and locality-aware reduce on public-resource grids
    • P. C. Chen, Y. L. Su, J. B. Chang, and C. K. Shieh, "Variable-Sized Map and Locality-Aware Reduce on Public-Resource Grids," GPC, 2010.
    • (2010) GPC
    • Chen, P.C.1    Su, Y.L.2    Chang, J.B.3    Shieh, C.K.4
  • 4
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing onlarge clusters
    • J. Dean and S. Ghemawat, "Mapreduce: simplified data processing onlarge clusters," OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 5
    • 84857154712 scopus 로고    scopus 로고
    • "http://download.oracle.com/javase/6/docs/."
  • 6
    • 79952375192 scopus 로고    scopus 로고
    • LEMO-MR: Low overhead and elastic MapReduce implementation optimized for memory and CPU-intensive applications
    • Z. Fadika and M. Govindaraju, "LEMO-MR: Low Overhead and Elastic MapReduce Implementation Optimized for Memory and CPU-Intensive Applications," CloudCom, 2010.
    • (2010) CloudCom
    • Fadika, Z.1    Govindaraju, M.2
  • 7
    • 84857153536 scopus 로고    scopus 로고
    • "http://fedoraproject.org/."
  • 8
    • 84857153532 scopus 로고    scopus 로고
    • "http://ganglia.sourceforge.net/."
  • 9
    • 84857156937 scopus 로고    scopus 로고
    • "Hadoop. http://hadoop.apache.org/."
  • 10
    • 84857153530 scopus 로고    scopus 로고
    • "Hadoop Tutorial. http://developer.yahoo.com/hadoop/tutorial/."
  • 11
    • 77952721751 scopus 로고    scopus 로고
    • The HiBench Benchmark Suite: Characterization of the MapReduce-based data analysis
    • S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, "The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis," ICDEW, 2010.
    • (2010) ICDEW
    • Huang, S.1    Huang, J.2    Dai, J.3    Xie, T.4    Huang, B.5
  • 14
    • 70449668946 scopus 로고    scopus 로고
    • CLOUDLET: Towards mapreduce implementation on virtual machines
    • S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, L. Qi, "CLOUDLET: Towards Mapreduce Implementation on Virtual Machines," HPDC, 2009.
    • (2009) HPDC
    • Ibrahim, S.1    Jin, H.2    Cheng, B.3    Cao, H.4    Wu, S.5    Qi, L.6
  • 15
    • 84857182809 scopus 로고    scopus 로고
    • Evaluating MapReduce on virtual machines: The hadoop case
    • S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi, "Evaluating MapReduce on Virtual Machines: The Hadoop Case," CloudCom, 2009.
    • (2009) CloudCom
    • Ibrahim, S.1    Jin, H.2    Lu, L.3    Qi, L.4    Wu, S.5    Shi, X.6
  • 16
    • 79952402115 scopus 로고    scopus 로고
    • LEEN: Locality/Fairness-aware key partitioning for MapReduce in the cloud
    • S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, "LEEN: Locality/Fairness-Aware Key Partitioning for MapReduce in the Cloud," CloudCom, 2010.
    • (2010) CloudCom
    • Ibrahim, S.1    Jin, H.2    Lu, L.3    Wu, S.4    He, B.5    Qi, L.6
  • 17
    • 77954913432 scopus 로고    scopus 로고
    • Skew-resistant parallel processing of feature-extracting scientific user-defined functions
    • Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia, "Skew-Resistant Parallel Processing of Feature-Extracting Scientific User-Defined Functions," SOCC, 2010.
    • (2010) SOCC
    • Kwon, Y.C.1    Balazinska, M.2    Howe, B.3    Rolia, J.4
  • 19
    • 84875981174 scopus 로고    scopus 로고
    • The curse of zipf and limits to parallelization: A look at the stragglers problem in MapReduce
    • J. Lin, "The Curse of Zipf and Limits to Parallelization: A Look at the Stragglers Problem in MapReduce," LSDS-IR, 2009.
    • (2009) LSDS-IR
    • Lin, J.1
  • 22
    • 72049096376 scopus 로고    scopus 로고
    • HPMR: Prefetching and pre-shuffling in shared mapreduce computation environment
    • S. Seo, I. Jang, K. Woo, I. Kim, J. Kim, S. Maeng, "HPMR: Prefetching and Pre-Shuffling in Shared MapReduce Computation Environment," CLUSTER, 2009.
    • (2009) CLUSTER
    • Seo, S.1    Jang, I.2    Woo, K.3    Kim, I.4    Kim, J.5    Maeng, S.6
  • 24
    • 84857159631 scopus 로고    scopus 로고
    • "http://www.vmware.com/."
  • 25
    • 77954636142 scopus 로고    scopus 로고
    • Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling
    • M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, "Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling," EuroSys, 2010.
    • (2010) EuroSys
    • Zaharia, M.1    Borthakur, D.2    Sarma, J.S.3    Elmeleegy, K.4    Shenker, S.5    Stoica, I.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.