메뉴 건너뛰기




Volumn 45, Issue 6, 2012, Pages 2050-2063

De-noising, phase ambiguity correction and visualization techniques for complex-valued ICA of group fMRI data

Author keywords

De noising; fMRI; Group analysis; ICA; Phase ambiguity; Visualization

Indexed keywords

ANALYSIS ALGORITHMS; COMPLEX FORMS; DATA-DRIVEN; DE-NOISING; DENOISING METHODS; DISTANCE-BASED; FMRI; FMRI DATA; FUNCTIONAL MAGNETIC RESONANCE IMAGING; GROUP ANALYSIS; GROUP STUDY; ICA ALGORITHMS; MAGNITUDE DATA; MAHALANOBIS; MODEL-DRIVEN TECHNIQUES; PERFORMANCE GAIN; PHASE AMBIGUITY; PHASE CORRECTIONS; PHASE INFORMATION; PRIOR INFORMATION; QUALITY MAPS; SEMI-BLIND METHODS; SENSITIVITY AND SPECIFICITY; THRESHOLDING METHODS; VISUALIZATION TECHNIQUE;

EID: 84857048673     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.04.033     Document Type: Article
Times cited : (41)

References (49)
  • 1
    • 0026653875 scopus 로고
    • Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
    • K. Kwong Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation Proc. Natl. Acad. Sci. 89 1992 5675 5679
    • (1992) Proc. Natl. Acad. Sci. , vol.89 , pp. 5675-5679
    • Kwong, K.1
  • 3
    • 67349221217 scopus 로고    scopus 로고
    • Biophysical modeling of phase changes in Bold fMRI
    • Z. Feng, A. Caprihan, K.B. Blagoev, V.D. Calhoun, Biophysical modeling of phase changes in Bold fMRI, Neuroimage 47 (2009) 540548.
    • (2009) Neuroimage , vol.47 , pp. 540548
    • Feng, Z.1    Caprihan, A.2    Blagoev, K.B.3    Calhoun, V.D.4
  • 4
    • 17844408155 scopus 로고    scopus 로고
    • Modeling both the magnitude and phase of complex-valued fMRI data
    • DOI 10.1016/j.neuroimage.2005.01.034
    • D.B. Rowe Modeling both the magnitude and phase of complex-valued fMRI data Neuroimage 25 2005 1310 1324 (Pubitemid 40591671)
    • (2005) NeuroImage , vol.25 , Issue.4 , pp. 1310-1324
    • Rowe, D.B.1
  • 5
    • 0031964944 scopus 로고    scopus 로고
    • In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 Tesla by measuring changes in susceptibility and velocity
    • DOI 10.1002/mrm.1910390116
    • F. Hoogenrad, J. Reichenbach, E. Haacke, S. Lai, K. Kuppusamy, and M. Sprenger In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity Magn. Reson. Med. 39 1998 97 107 (Pubitemid 28028344)
    • (1998) Magnetic Resonance in Medicine , vol.39 , Issue.1 , pp. 97-107
    • Hoogenraad, F.G.C.1    Reichenbach, J.R.2    Haacke, E.M.3    Lai, S.4    Kuppusamy, K.5    Sprenger, M.6
  • 6
    • 73749086428 scopus 로고    scopus 로고
    • Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks
    • S. Arja, Z. Feng, Z. Chen, A. Caprihan, K. Kiehl, T. Adal, V. Calhoun, Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks, Neuroimage 49 (2010) 31493160.
    • (2010) Neuroimage , vol.49 , pp. 31493160
    • Arja, S.1    Feng, Z.2    Chen, Z.3    Caprihan, A.4    Kiehl, K.5    Adal, T.6    Calhoun, V.7
  • 7
    • 77950578957 scopus 로고    scopus 로고
    • Effect of surrounding vasculature on intravoxel bold signal
    • Z. Chen, A. Caprihan, and V. Calhoun Effect of surrounding vasculature on intravoxel bold signal Med. Phys. 37 2010 1778 1787
    • (2010) Med. Phys. , vol.37 , pp. 1778-1787
    • Chen, Z.1    Caprihan, A.2    Calhoun, V.3
  • 8
    • 0036136108 scopus 로고    scopus 로고
    • Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI
    • DOI 10.1002/mrm.10041
    • R. Menon Postacquisition suppression of large-vessel bold signals in high-resolution fMRI Magn. Reson. Med. 47 2002 1 9 (Pubitemid 34019686)
    • (2002) Magnetic Resonance in Medicine , vol.47 , Issue.1 , pp. 1-9
    • Menon, R.S.1
  • 11
    • 0035172708 scopus 로고    scopus 로고
    • FMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis
    • DOI 10.1006/nimg.2001.0921
    • V.D. Calhoun, T. Adal, V.B. McGinty, J.J. Pekar, T.D. Watson, and G.D. Pearlson fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis Neuroimage 14 2001 1080 1088 (Pubitemid 33049849)
    • (2001) NeuroImage , vol.14 , Issue.5 , pp. 1080-1088
    • Calhoun, V.D.1    Adali, T.2    McGinty, V.B.3    Pekar, J.J.4    Watson, T.D.5    Pearlson, G.D.6
  • 17
    • 77950955100 scopus 로고    scopus 로고
    • Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI
    • P. Rodriguez, N. Correa, T. Eichele, V. Calhoun, and T. Adal Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI J. Signal Process. Syst. 2010 1 12
    • (2010) J. Signal Process. Syst. , pp. 1-12
    • Rodriguez, P.1    Correa, N.2    Eichele, T.3    Calhoun, V.4    Adal, T.5
  • 18
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • A. Bell, and T. Sejnowski An information maximization approach to blind separation and blind deconvolution Neural Comput. 7 1995 1129 1159
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 20
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • P. Comon Independent component analysis: a new concept? Signal Process. 36 1994 11 20
    • (1994) Signal Process. , vol.36 , pp. 11-20
    • Comon, P.1
  • 22
    • 0031702801 scopus 로고    scopus 로고
    • Independent component analysis of fMRI data: Examining the assumptions
    • DOI 10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-E
    • M.J. McKeown, and T.J. Sejnowski Independent component analysis of fMRI data: examining the assumptions Hum. Brain Mapp. 6 1998 368 372 (Pubitemid 28460594)
    • (1998) Human Brain Mapping , vol.6 , Issue.5-6 , pp. 368-372
    • McKeown, M.J.1    Sejnowski, T.J.2
  • 23
    • 0032991979 scopus 로고    scopus 로고
    • Blind source separation of multiple signal sources of fMRI data sets using independent component analysis
    • DOI 10.1097/00004728-199903000-00016
    • B.B. Biswal, and J.L. Ulmer Blind source separation of multiple signal sources of fMRI data sets using independent component analysis J. Comput. Assist. Tomogr. 23 1999 265 271 (Pubitemid 29138504)
    • (1999) Journal of Computer Assisted Tomography , vol.23 , Issue.2 , pp. 265-271
    • Biswal, B.B.1    Ulmer, J.L.2
  • 24
    • 4243230918 scopus 로고
    • Localization of function in the cerebral cortex. past, present and future
    • C.G. Phillips Localization of function in the cerebral cortex. past, present and future Brain 107 1984 327 361
    • (1984) Brain , vol.107 , pp. 327-361
    • Phillips, C.G.1
  • 25
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
    • V.D. Calhoun, J. Sui, and T. Adal A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data Neuroimage 45 2009 S163 S172
    • (2009) Neuroimage , vol.45
    • Calhoun, V.D.1    Sui, J.2    Adal, T.3
  • 26
    • 75749151294 scopus 로고    scopus 로고
    • An improved constrained ICA with reference based unmixing matrix initialization
    • Z. Sun, and L. Shang An improved constrained ICA with reference based unmixing matrix initialization Neurocomput. Lett. 73 2010 1013 1017
    • (2010) Neurocomput. Lett. , vol.73 , pp. 1013-1017
    • Sun, Z.1    Shang, L.2
  • 27
    • 13844280257 scopus 로고    scopus 로고
    • Approach and applications of constrained ICA
    • DOI 10.1109/TNN.2004.836795
    • W. Lu, and J. Rajapakse Approach and applications of constrained ICA IEEE Trans. Neural Networks 16 2005 203 212 (Pubitemid 40241921)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 203-212
    • Lu, W.1    Rajapakse, J.C.2
  • 28
    • 33645224023 scopus 로고    scopus 로고
    • Unmixing fMRI with independent component analysis
    • V.D. Calhoun, and T. Adal Unmixing fMRI with independent component analysis IEEE Eng. Med. Biol. Mag. 25 2006 79 90
    • (2006) IEEE Eng. Med. Biol. Mag. , vol.25 , pp. 79-90
    • Calhoun, V.D.1    Adal, T.2
  • 29
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
    • V. Calhoun, J. Liu, and T. Adal A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data Neuroimage 45 2009 163 172
    • (2009) Neuroimage , vol.45 , pp. 163-172
    • Calhoun, V.1    Liu, J.2    Adal, T.3
  • 30
    • 35948939625 scopus 로고    scopus 로고
    • Estimating the number of independent components for fMRI data
    • Y.O. Li, T. Adal, and V.D. Calhoun Estimating the number of independent components for fMRI data Hum. Brain Mapp. 28 2007 1251 1266
    • (2007) Hum. Brain Mapp. , vol.28 , pp. 1251-1266
    • Li, Y.O.1    Adal, T.2    Calhoun, V.D.3
  • 32
    • 33645242071 scopus 로고    scopus 로고
    • Comparison of blind source separation algorithms for fMRI using a new matlab toolbox: GIFT
    • N. Correa, et al., Comparison of blind source separation algorithms for fMRI using a new matlab toolbox: GIFT, in: ICASSP, vol. 5, 2005, pp. 401404.
    • (2005) ICASSP , vol.5 , pp. 401404
    • Correa, N.1
  • 34
    • 42549095953 scopus 로고    scopus 로고
    • Complex ICA by negentropy maximization
    • DOI 10.1109/TNN.2007.911747
    • M. Novey, and T. Adal Complex ICA by negentropy maximization IEEE Trans. Neural Networks 19 2008 596 609 (Pubitemid 351583577)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.4 , pp. 596-609
    • Novey, M.1    Adali, T.2
  • 35
    • 77954865269 scopus 로고    scopus 로고
    • Complex independent component analysis by entropy bound minimization
    • X.-L. Li, T. Adal, Complex independent component analysis by entropy bound minimization, IEEE Trans. Signal Process. 57 (2010) 14171430.
    • (2010) IEEE Trans. Signal Process. , vol.57 , pp. 14171430
    • Li, X.-L.1    Adal, T.2
  • 39
    • 61649112456 scopus 로고    scopus 로고
    • Automated phase correction via maximization of the real signal
    • E. Hardy, J. Hoferer, D. Mertens, and G. Kasper Automated phase correction via maximization of the real signal Magn. Reson. Imag. 27 2009 393 400
    • (2009) Magn. Reson. Imag. , vol.27 , pp. 393-400
    • Hardy, E.1    Hoferer, J.2    Mertens, D.3    Kasper, G.4
  • 41
    • 0024394344 scopus 로고
    • Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction
    • DOI 10.1118/1.596304
    • M. Bernstein, D. Thomasson, and W. Perman Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction Med. Phys. 16 1989 813 817 (Pubitemid 19265742)
    • (1989) Medical Physics , vol.16 , Issue.5 , pp. 813-817
    • Bernstein, M.A.1    Thomasson, D.M.2    Perman, W.H.3
  • 43
    • 78349264128 scopus 로고    scopus 로고
    • A complex generalized gaussian distribution-characterization, generation, and estimation
    • M. Novey, T. Adal, and A. Roy A complex generalized gaussian distribution-characterization, generation, and estimation IEEE Trans. Signal Process. 58 2010 1427 1433
    • (2010) IEEE Trans. Signal Process. , vol.58 , pp. 1427-1433
    • Novey, M.1    Adal, T.2    Roy, A.3
  • 45
    • 77950547180 scopus 로고    scopus 로고
    • A CCA ICA based model for multi-task brain imaging data fusion and its application to schizophrenia
    • J. Sui, T. Adal, G. Pearlson, H. Yang, S.R. Sponheim, T. White, and V.D. Calhoun A CCA ICA based model for multi-task brain imaging data fusion and its application to schizophrenia Neuroimage 51 2010 123 134
    • (2010) Neuroimage , vol.51 , pp. 123-134
    • Sui, J.1    Adal, T.2    Pearlson, G.3    Yang, H.4    Sponheim, S.R.5    White, T.6    Calhoun, V.D.7
  • 47
    • 0014254846 scopus 로고
    • Probability plotting methods for the analysis of data
    • R. Gnanadesikan, and M. Wilk Probability plotting methods for the analysis of data Biometrika 55 1968 1 17
    • (1968) Biometrika , vol.55 , pp. 1-17
    • Gnanadesikan, R.1    Wilk, M.2
  • 48
    • 0242578049 scopus 로고    scopus 로고
    • Complex independent component analysis of frequency-domain electroencephalographic data
    • DOI 10.1016/j.neunet.2003.08.003
    • J. Anemüller, T.J. Sejnowski, and S. Makeig Complex independent component analysis of frequency-domain electroencephalographic data Neural Networks 16 2003 1311 1323 (Pubitemid 37386370)
    • (2003) Neural Networks , vol.16 , Issue.9 , pp. 1311-1323
    • Anemuller, J.1    Sejnowski, T.J.2    Makeig, S.3
  • 49
    • 16244374284 scopus 로고    scopus 로고
    • Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model
    • DOI 10.1016/j.neuroimage.2004.09.038, PII S1053811904005622
    • D.B. Rowe, and B.R. Logan Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model Neuroimage 24 2005 603 606 (Pubitemid 41359059)
    • (2005) NeuroImage , vol.24 , Issue.2 , pp. 603-606
    • Rowe, D.B.1    Logan, B.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.