메뉴 건너뛰기




Volumn 19, Issue 1, 2012, Pages 25-35

Neural network based vibration analysis with novelty in data detection for a large steam turbine

Author keywords

clustering; Integrated health monitoring; quantization and topographic errors; self organization map

Indexed keywords

ERRORS; STEAM TURBINES; THERMOELECTRIC POWER PLANTS; VIBRATION ANALYSIS;

EID: 84856927322     PISSN: 10709622     EISSN: None     Source Type: Journal    
DOI: 10.3233/SAV-2012-0614     Document Type: Article
Times cited : (22)

References (19)
  • 1
    • 0023324765 scopus 로고
    • Periodic and continuous vibration monitoring for preventive/predictive maintenance of rotating machinery
    • W.C. Laws and A. Muszynska, Periodic and Continuous Vibration Monitoring for Preventive/Predictive Maintenance of Rotating Machinery, Journal of Engineering for Gas Turbines and Power 109 (1987), 159-167. (Pubitemid 17552518)
    • (1987) Journal of Engineering for Gas Turbines and Power , vol.109 , Issue.2 , pp. 159-167
    • Laws, W.C.1    Muszynska, A.2
  • 3
    • 85021199962 scopus 로고    scopus 로고
    • International Standards Organization mechanical vibration of non-reciprocating machines-measurements on rotating shafts and evaluation, ISO 7919-1986
    • International Standards Organization, mechanical vibration of non-reciprocating machines-measurements on rotating shafts and evaluation, ISO 7919-1986.
  • 12
  • 15
    • 33644887129 scopus 로고    scopus 로고
    • The parameterless self-organizing map algorithm
    • DOI 10.1109/TNN.2006.871720
    • E. Berglund and J. Sitte, The Parameter less Self-Organizing Map Algorithm, Neural Networks, IEEE Transactions 17(2) (2006), 305-316. (Pubitemid 43380057)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 305-316
    • Berglund, E.1    Sitte, J.2
  • 16
    • 4344560583 scopus 로고    scopus 로고
    • Neural-network-based system for novel fault detection in rotating machinery
    • V. Crupi, E. Guglielmino and G. Milazzo, Neural-Network-Based System for Novel fault Detection in Rotating Machinery, Journal of vibration and control 10 (2004), 1137-1150.
    • (2004) Journal of vibration and control , vol.10 , pp. 1137-1150
    • Crupi, V.1    Guglielmino, E.2    Milazzo, G.3
  • 18
    • 33745909223 scopus 로고    scopus 로고
    • Data mining for fault diagnosis and machine learning for rotating machinery
    • Z. Gang, D. XiangJiang, K. Li and J.Diao, Data Mining for Fault Diagnosis andMachine Learning for RotatingMachinery, Key Engineering Materials 293 (2005), 175-182. (Pubitemid 46840372)
    • (2005) Key Engineering Materials , vol.293-294 , pp. 175-182
    • Zhao, G.1    Jiang, D.2    Li, K.3    Diao, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.