메뉴 건너뛰기




Volumn 11, Issue 1, 2012, Pages 33-53

Alleviating the sparsity problem of collaborative filtering using an efficient iterative clustered prediction technique

Author keywords

clustering based collaborative filtering; iterative based collaborative filtering; memory based collaborative filtering; Recommender system

Indexed keywords


EID: 84856831915     PISSN: 02196220     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219622012500022     Document Type: Article
Times cited : (6)

References (43)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • DOI 10.1109/TKDE.2005.99
    • G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering 17 (2005) 734-749. (Pubitemid 40860454)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 77956612061 scopus 로고    scopus 로고
    • Application domain and functional classification of recommender systems a survey
    • K. Nageswara Rao and V. G. Talwar, Application domain and functional classification of recommender systems a survey, Journal of Library and Information Technology 28 (2008) 17-36.
    • (2008) Journal of Library and Information Technology , vol.28 , pp. 17-36
    • K. Nageswara Rao1    Talwar, V.G.2
  • 4
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith and J. York, Amazon.com recommendations: Item-to-item collaborative filtering, IEEE Internet Computing 7 (2003) 76-80.
    • (2003) IEEE Internet Computing , vol.7 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 6
    • 34248566912 scopus 로고    scopus 로고
    • A personalized English learning recommender system for ESL students
    • DOI 10.1016/j.eswa.2006.10.004, PII S0957417406003198
    • M.-H. Hsu, A personalized English learning recommender system for ESL students, Expert Systems with Applications 34 (2008) 683-688. (Pubitemid 46756294)
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 683-688
    • Hsu, M.-H.1
  • 11
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Z. Huang, H. Chen and D. Zeng, Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering, ACM Transactions on Information Systems 22 (2004) 116-142.
    • (2004) ACM Transactions on Information Systems , vol.22 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 13
    • 24944592578 scopus 로고    scopus 로고
    • Alleviating the sparsity problem of collaborative filtering using trust inferences
    • Trust Management: Third International Conference, iTrust 2005, Proceedings
    • M. Papagelis, D. Plexousakis and T. Kutsuras, Alleviating the sparsity problem of collaborative filtering using trust inferences, in Proc. of the 3rd Int. Conf. on Trust Management (iTrust 2005) (Paris, France, 2005), pp. 224-239. (Pubitemid 41313131)
    • (2005) Lecture Notes in Computer Science , vol.3477 , pp. 224-239
    • Papagelis, M.1    Plexousakis, D.2    Kutsuras, T.3
  • 14
    • 58349114839 scopus 로고    scopus 로고
    • An iterative semi-explicit rating method for building collaborative recommender systems
    • B. Jeong, J. Lee and H. Cho, An iterative semi-explicit rating method for building collaborative recommender systems, Expert Systems with Applications 36 (2009) 6181-6186.
    • (2009) Expert Systems with Applications , vol.36 , pp. 6181-6186
    • Jeong, B.1    Lee, J.2    Cho, H.3
  • 20
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • DOI 10.1023/A:1011419012209
    • K. Goldbergh, T. Roeder, D. Gupta and C. Perkins, Eigentaste: A constant time collaborative filtering algorithm, Information Retrieval 4 (2001) 133-151. (Pubitemid 33636930)
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 21
    • 0010279656 scopus 로고    scopus 로고
    • Application of dimensionality reduction in recommender system-A case study
    • Boston, MA
    • B. M. Sarwar, G. Karypis, J. A. Konstan and J. Riedl, Application of dimensionality reduction in recommender system-A case study, ACM WebKDD Workshop (Boston, MA, 2000), pp. 285-295.
    • (2000) ACM WebKDD Workshop , pp. 285-295
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Riedl, J.4
  • 24
    • 0012253296 scopus 로고    scopus 로고
    • Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
    • Seattle, Washington, USA
    • A. Popescul, L. H. Ungar, D. M. Pennock and S. Lawrence, Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments, in Proc. of Uncertainty in Artificial Intelligence (UAI ) (Seattle, Washington, USA, 2001), pp. 437-444.
    • (2001) Proc. of Uncertainty in Artificial Intelligence (UAI ) , pp. 437-444
    • Popescul, A.1    Ungar, L.H.2    Pennock, D.M.3    Lawrence, S.4
  • 32
    • 77952420807 scopus 로고    scopus 로고
    • Using k-means method and spectral clustering technique in an outfitter's value analysis
    • SSCI, SCI
    • E.-C. Chang, S.-C. Huang and H.-H. Wu, Using k-means method and spectral clustering technique in an outfitter's value analysis, Quality and Quantity 44(4) (SSCI, SCI, 2009) 807-815.
    • (2009) Quality and Quantity , vol.44 , Issue.4 , pp. 807-815
    • Chang, E.-C.1    Huang, S.-C.2    Wu, H.-H.3
  • 33
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • F. R. Bach and M. I. Jordan, Learning spectral clustering with application to speech separation, Journal of Machine Learning Research 7 (2006) 1963-2001. (Pubitemid 44497457)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 34
    • 34548016117 scopus 로고    scopus 로고
    • Robust path-based spectral clustering
    • DOI 10.1016/j.patcog.2007.04.010, PII S0031320307002038
    • H. Chang and D.-Y. Yeung, Robust path-based spectral clustering, Pattern Recognition 41 (2008) 191-203. (Pubitemid 47284202)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 191-203
    • Chang, H.1    Yeung, D.-Y.2
  • 38
    • 31844442219 scopus 로고    scopus 로고
    • Geometric methods for feature extraction and dimensional reduction-A guided tour
    • C. J. C. Burges, Geometric methods for feature extraction and dimensional reduction-a guided tour, in Proc. of the Data Mining and Knowledge Discovery Handbook (2005), pp. 59-92.
    • (2005) Proc. of the Data Mining and Knowledge Discovery Handbook , pp. 59-92
    • Burges, C.J.C.1
  • 39
    • 33845507552 scopus 로고    scopus 로고
    • Research on data mining and knowledge management and its applications in China's economic development: Significance and trend
    • DOI 10.1142/S021962200600226X, PII S021962200600226X
    • S. W. Cheng, R. W. Dai, W. X. Xu and Y. Shi, Research on data mining and knowledge management and its applications in China's economic development: Significance and trend, International Journal of Information Technology & Decision Making 5(4) (2006) 585-596. (Pubitemid 44917235)
    • (2006) International Journal of Information Technology and Decision Making , vol.5 , Issue.4 , pp. 585-596
    • Cheng, S.1    Dai, R.2    Xu, W.3    Shi, Y.4
  • 43
    • 84856931951 scopus 로고    scopus 로고
    • MovieLens Website
    • MovieLens Website, http://www.movielens.umn.edu/(2010).
    • (2010)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.