-
3
-
-
0001782795
-
-
10.1021/ar9702278
-
D. W. Oxtoby, Acc. Chem. Res. 31, 91 (1998). 10.1021/ar9702278
-
(1998)
Acc. Chem. Res.
, vol.31
, pp. 91
-
-
Oxtoby, D.W.1
-
5
-
-
17144377481
-
Numerical simulation of crystal nucleation in colloids
-
DOI 10.1007/b99429
-
S. Auer and D. Frenkel, Adv. Polym. Sci. 173, 149 (2005). 10.1007/b99429 (Pubitemid 40525090)
-
(2005)
Advances in Polymer Science
, vol.173
, pp. 149-208
-
-
Auer, S.1
Frenkel, D.2
-
8
-
-
0030618071
-
Cloud microphysics and climate
-
DOI 10.1126/science.276.5315.1072
-
M. B. Baker, Science 276, 1072 (1997). 10.1126/science.276.5315.1072 (Pubitemid 27218106)
-
(1997)
Science
, vol.276
, Issue.5315
, pp. 1072-1078
-
-
Baker, M.B.1
-
9
-
-
28444438537
-
T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber
-
DOI 10.1016/j.jphotochem.2005.08.026, PII S1010603005004181
-
S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, J. Photochem. Photobiol., A 176, 208 (2005). 10.1016/j.jphotochem. 2005.08.026 (Pubitemid 41722505)
-
(2005)
Journal of Photochemistry and Photobiology A: Chemistry
, vol.176
, Issue.SPEC. ISS. 1-3
, pp. 208-217
-
-
Benz, S.1
Megahed, K.2
Mohler, O.3
Saathoff, H.4
Wagner, R.5
Schurath, U.6
-
10
-
-
68149169028
-
-
10.1088/0034-4885/72/5/056801
-
D. A. Hegg and M. B. Baker, Rep. Prog. Phys. 72, 056801 (2009). 10.1088/0034-4885/72/5/056801
-
(2009)
Rep. Prog. Phys.
, vol.72
, pp. 056801
-
-
Hegg, D.A.1
Baker, M.B.2
-
14
-
-
0029540056
-
-
10.1175/1520-0469(1995)0521924:ANLAHI2.0.CO;2
-
H. R. Pruppacher, J. Atmos. Sci. 52, 1924 (1995). 10.1175/1520-0469(1995) 0521924:ANLAHI2.0.CO;2
-
(1995)
J. Atmos. Sci.
, vol.52
, pp. 1924
-
-
Pruppacher, H.R.1
-
15
-
-
0034632905
-
Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
-
DOI 10.1038/35020537
-
T. Koop, B. Luo, A. Tsias, and T. Peter, Nature (London) 406, 611 (2000). 10.1038/35020537 (Pubitemid 30641044)
-
(2000)
Nature
, vol.406
, Issue.6796
, pp. 611-614
-
-
Koop, T.1
Luo, B.2
Tsias, A.3
Peter, T.4
-
17
-
-
33645876497
-
-
10.1016/j.molliq.2005.11.025
-
P. Kabath, P. Stöckel, A. Lindinger, and H. Baumgärtel, J. Mol. Liq. 125, 204 (2006). 10.1016/j.molliq.2005.11.025
-
(2006)
J. Mol. Liq.
, vol.125
, pp. 204
-
-
Kabath, P.1
Stöckel, P.2
Lindinger, A.3
Baumgärtel, H.4
-
18
-
-
0038372859
-
-
10.1063/1.479946
-
B. Krämer, O. Hübner, H. Vortisch, L. Wöste, T. Leisner, M. Schwell, E. Rühl, and H. Baumgärtel, J. Chem. Phys. 111, 6521 (1999). 10.1063/1.479946
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 6521
-
-
Krämer, B.1
Hübner, O.2
Vortisch, H.3
Wöste, L.4
Leisner, T.5
Schwell, M.6
Rühl, E.7
Baumgärtel, H.8
-
20
-
-
33947346630
-
-
10.1021/ja01315a102
-
L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). 10.1021/ja01315a102
-
(1935)
J. Am. Chem. Soc.
, vol.57
, pp. 2680
-
-
Pauling, L.1
-
22
-
-
15244352511
-
The formation of cubic ice under conditions relevant to Earth's atmosphere
-
DOI 10.1038/nature03403
-
B. J. Murray, D. A. Knopf, and A. K. Bertram, Nature (London) 434, 202 (2005). 10.1038/nature03403 (Pubitemid 40388047)
-
(2005)
Nature
, vol.434
, Issue.7030
, pp. 202-205
-
-
Murray, B.J.1
Knopf, D.A.2
Bertram, A.K.3
-
23
-
-
33845343228
-
When dry air is too humid
-
DOI 10.1126/science.1135199
-
T. Peter, C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop, Science 314, 1399 (2006). 10.1126/science.1135199 (Pubitemid 44872767)
-
(2006)
Science
, vol.314
, Issue.5804
, pp. 1399-1402
-
-
Peter, T.1
Marcolli, C.2
Spichtinger, P.3
Corti, T.4
Baker, M.B.5
Koop, T.6
-
24
-
-
33845716428
-
Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds
-
DOI 10.1029/2006GL026671
-
J. E. Shilling, M. A. Tolbert, O. B. Toon, E. J. Jensen, B. J. Murray, and A. K. Bertram, Geophys. Res. Lett. 33, L17801, doi: 10.1029/2006GL026671 (2006). (Pubitemid 44962208)
-
(2006)
Geophysical Research Letters
, vol.33
, Issue.17
-
-
Shilling, J.E.1
Tolbert, M.A.2
Toon, O.B.3
Jensen, E.J.4
Murray, B.J.5
Bertram, A.K.6
-
25
-
-
79959854923
-
-
10.1126/science.1202851
-
A. J. Heymsfield, G. Thompson, H. Morrison, A. Bansemer, R. M. Rasmussen, P. Minnis, Z. Wang, and D. Zhang, Science 333, 77 (2011). 10.1126/science. 1202851
-
(2011)
Science
, vol.333
, pp. 77
-
-
Heymsfield, A.J.1
Thompson, G.2
Morrison, H.3
Bansemer, A.4
Rasmussen, R.M.5
Minnis, P.6
Wang, Z.7
Zhang, D.8
-
26
-
-
0004016501
-
-
10.1063/1.445869
-
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983). 10.1063/1.445869
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 926
-
-
Jorgensen, W.L.1
Chandrasekhar, J.2
Madura, J.D.3
Impey, R.W.4
Klein, M.L.5
-
28
-
-
42549094990
-
Determination of phase diagrams via computer simulation: Methodology and applications to water, electrolytes and proteins
-
DOI 10.1088/0953-8984/20/15/153101, PII S0953898408349145
-
C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya, J. Phys.: Condens. Matter 20, 153101 (2008). 10.1088/0953-8984/20/15/153101 (Pubitemid 351592343)
-
(2008)
Journal of Physics Condensed Matter
, vol.20
, Issue.15
, pp. 153101
-
-
Vega, C.1
Sanz, E.2
Abascal, J.L.F.3
Noya, E.G.4
-
33
-
-
0037071343
-
-
10.1103/PhysRevLett.88.195701
-
M. Yamada, S. Mossa, H. E. Stanley, and F. Sciortino, Phys. Rev. Lett. 88, 195701 (2002). 10.1103/PhysRevLett.88.195701
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 195701
-
-
Yamada, M.1
Mossa, S.2
Stanley, H.E.3
Sciortino, F.4
-
34
-
-
0037187632
-
Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing
-
DOI 10.1038/416409a
-
M. Matsumoto, S. Saito, and I. Ohmine, Nature (London) 416, 409 (2002). 10.1038/416409a (Pubitemid 34272871)
-
(2002)
Nature
, vol.416
, Issue.6879
, pp. 409-413
-
-
Matsumoto, M.1
Saito, S.2
Ohmine, I.3
-
39
-
-
33749589397
-
Homogeneous freezing of water starts in the subsurface
-
DOI 10.1021/jp064021c
-
L. Vrbka and P. Jungwirth, J. Phys. Chem. B 110, 18126 (2006). 10.1021/jp064021c (Pubitemid 44547309)
-
(2006)
Journal of Physical Chemistry B
, vol.110
, Issue.37
, pp. 18126-18129
-
-
Vrbka, L.1
Jungwirth, P.2
-
40
-
-
33947608464
-
Molecular dynamics simulations of freezing of water and salt solutions
-
DOI 10.1016/j.molliq.2006.12.011, PII S0167732206003229
-
L. Vrbka and P. Jungwirth, J. Mol. Liq. 134, 64 (2007). 10.1016/j.molliq.2006.12.011 (Pubitemid 46483751)
-
(2007)
Journal of Molecular Liquids
, vol.134
, Issue.SPEC. ISS. 1-3
, pp. 64-70
-
-
Vrbka, L.1
Jungwirth, P.2
-
41
-
-
33847654761
-
Formation of stacking faults during ice growth on hexagonal and cubic substrates
-
DOI 10.1021/jp067388q
-
M. A. Carignano, J. Phys. Chem. C 111, 501 (2007). 10.1021/jp067388q (Pubitemid 46353107)
-
(2007)
Journal of Physical Chemistry C
, vol.111
, Issue.2
, pp. 501-504
-
-
Carignano, M.A.1
-
42
-
-
42449095069
-
Metadynamics simulations of ice nucleation and growth
-
DOI 10.1063/1.2888999
-
D. Quigley and P. M. Rodger, J. Chem. Phys. 128, 154518 (2008). 10.1063/1.2888999 (Pubitemid 351574664)
-
(2008)
Journal of Chemical Physics
, vol.128
, Issue.15
, pp. 154518
-
-
Quigley, D.1
Rodger, P.M.2
-
43
-
-
58149354599
-
-
10.1088/0953-8984/20/49/494243
-
A. V. Brukhno, J. Anwar, R. Davidchack, and R. Handel, J. Phys.: Condens. Matter 20, 494243 (2008). 10.1088/0953-8984/20/49/494243
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 494243
-
-
Brukhno, A.V.1
Anwar, J.2
Davidchack, R.3
Handel, R.4
-
46
-
-
79960906847
-
-
10.1063/1.3609768
-
V. C. Weiss, M. Rullich, C. Köhler, and T. Frauenheim, J. Chem. Phys. 135, 034701 (2011). 10.1063/1.3609768
-
(2011)
J. Chem. Phys.
, vol.135
, pp. 034701
-
-
Weiss, V.C.1
Rullich, M.2
Köhler, C.3
Frauenheim, T.4
-
50
-
-
84856703155
-
-
The actual pressures used are 1 atm (Ref.) and 1 bar (Refs. and), but they are for all intents and purposes equivalent within the simulation error
-
The actual pressures used are 1 atm (Ref.) and 1 bar (Refs. and), but they are for all intents and purposes equivalent within the simulation error.
-
-
-
-
51
-
-
84856746023
-
-
We note here that the system size in Quigley and Rodgers simulation is in the range where a cylindrical cluster that spans the box has the lowest surface to volume ratio for ice clusters at the toof the barrier (Ref.). However, this can only act to lower the free energy barrier compared to a spherical critical cluster
-
We note here that the system size in Quigley and Rodgers simulation is in the range where a cylindrical cluster that spans the box has the lowest surface to volume ratio for ice clusters at the top of the barrier (Ref.). However, this can only act to lower the free energy barrier compared to a spherical critical cluster.
-
-
-
-
52
-
-
84856764630
-
-
-2 (calculated for TIP4P water with a sharcutoff, rather than with Ewald summation) (Ref.)
-
-2 (calculated for TIP4P water with a sharp cutoff, rather than with Ewald summation) (Ref.).
-
-
-
-
53
-
-
18744375794
-
The melting temperature of the most common models of water
-
DOI 10.1063/1.1862245, 114507
-
C. Vega, E. Sanz, and J. L. F. Abascal, J. Chem. Phys. 122, 114507 (2005). 10.1063/1.1862245 (Pubitemid 40665538)
-
(2005)
Journal of Chemical Physics
, vol.122
, Issue.11
, pp. 1-9
-
-
Vega, C.1
Sanz, E.2
Abascal, J.L.F.3
-
54
-
-
38549124944
-
Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface
-
DOI 10.1103/PhysRevLett.100.036104
-
R. Handel, R. L. Davidchack, J. Anwar, and A. Brukhno, Phys. Rev. Lett. 100, 036104 (2008). 10.1103/PhysRevLett.100.036104 (Pubitemid 351161792)
-
(2008)
Physical Review Letters
, vol.100
, Issue.3
, pp. 036104
-
-
Handel, R.1
Davidchack, R.L.2
Anwar, J.3
Brukhno, A.4
-
62
-
-
80455129244
-
-
10.1039/c1cp22167a
-
T. Li, D. Donadio, G. Russo, and G. Galli, Phys. Chem. Chem. Phys. 13, 19807 (2011). 10.1039/c1cp22167a
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 19807
-
-
Li, T.1
Donadio, D.2
Russo, G.3
Galli, G.4
-
64
-
-
77950795429
-
-
10.1039/b919724a
-
E. B. Moore, E. de la Llave, K. Welke, D. A. Scherlis, and V. Molinero, Phys. Chem. Chem. Phys. 12, 4124 (2010). 10.1039/b919724a
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, pp. 4124
-
-
Moore, E.B.1
De La Llave, E.2
Welke, K.3
Scherlis, D.A.4
Molinero, V.5
-
70
-
-
0002467378
-
-
10.1006/jcph.1995.1039
-
S. Plimpton, J. Comput. Phys. 117, 1 (1995). 10.1006/jcph.1995.1039
-
(1995)
J. Comput. Phys.
, vol.117
, pp. 1
-
-
Plimpton, S.1
-
71
-
-
0035931881
-
Prediction of absolute crystal-nucleation rate in hard-sphere colloids
-
DOI 10.1038/35059035
-
S. Auer and D. Frenkel, Nature (London) 409, 1020 (2001). 10.1038/35059035 (Pubitemid 32204049)
-
(2001)
Nature
, vol.409
, Issue.6823
, pp. 1020-1023
-
-
Auer, S.1
Frenkel, D.2
-
72
-
-
0037178986
-
Crystallization of weakly charged colloidal spheres: A numerical study
-
DOI 10.1088/0953-8984/14/33/308, PII S0953898402382687
-
S. Auer and D. Frenkel, J. Phys.: Condens. Matter 14, 7667 (2002). 10.1088/0953-8984/14/33/308 (Pubitemid 34992284)
-
(2002)
Journal of Physics Condensed Matter
, vol.14
, Issue.33
, pp. 7667-7680
-
-
Auer, S.1
Frenkel, D.2
-
73
-
-
78650865374
-
-
10.1063/1.3506838
-
L. Filion, M. Hermes, R. Ni, and M. Dijkstra, J. Chem. Phys. 133, 244115 (2010). 10.1063/1.3506838
-
(2010)
J. Chem. Phys.
, vol.133
, pp. 244115
-
-
Filion, L.1
Hermes, M.2
Ni, R.3
Dijkstra, M.4
-
74
-
-
33748374124
-
-
10.1063/1.436049
-
D. Chandler, J. Chem. Phys. 68, 2959 (1978). 10.1063/1.436049
-
(1978)
J. Chem. Phys.
, vol.68
, pp. 2959
-
-
Chandler, D.1
-
76
-
-
84856703154
-
-
The five seed clusters chosen for each system comprised ∼35 particles. In the first umbrella sampling window, we allowed the cluster to melt completely and then to regrow within the window. The point G 0 corresponds to the supercooled liquid state for all simulations. Matching the free energy difference between the first and the second window is somewhat problematic, as the equilibrated state in the first window is, given that the clusters are allowed to melt completely, the same as in the simulations grown from the supercooled liquid directly. However, we suggest the free energy difference between the simulations with different starting points arises at a later stage, when the clusters cease to be interconvertible
-
The five seed clusters chosen for each system comprised ∼35 particles. In the first umbrella sampling window, we allowed the cluster to melt completely and then to regrow within the window. The point G 0 corresponds to the supercooled liquid state for all simulations. Matching the free energy difference between the first and the second window is somewhat problematic, as the equilibrated state in the first window is, given that the clusters are allowed to melt completely, the same as in the simulations grown from the supercooled liquid directly. However, we suggest the free energy difference between the simulations with different starting points arises at a later stage, when the clusters cease to be interconvertible. We justify this assertion by performing umbrella sampling simulations on an intermediate window between the first and the second one, in which the cluster is not allowed to melt completely; we observe no difference between the free energies reported in Fig. and in this overlapping window, which suggests that, although the resulting ice nuclei are somewhat different between the equilibrated states in the overlapping regions of the first two umbrella sampling windows in seeded simulations, they have the same free energy.
-
-
-
-
77
-
-
84856746027
-
-
For example, if an eclipsed bond is with a particle classified as being liquid, it is unclear whether this should qualify a particle as being hexagonal
-
For example, if an eclipsed bond is with a particle classified as being liquid, it is unclear whether this should qualify a particle as being hexagonal.
-
-
-
-
78
-
-
84856755526
-
-
Core ice particles are ice particles in the largest crystalline cluster whose four neighbours (particles within 3.6 ) all also belong to the cluster; such particles are classified as being hexagonal if they have one eclipsed and three staggered connections to neighbours
-
Core ice particles are ice particles in the largest crystalline cluster whose four neighbours (particles within 3.6 ) all also belong to the cluster; such particles are classified as being hexagonal if they have one eclipsed and three staggered connections to neighbours.
-
-
-
-
81
-
-
34547674536
-
Evidence for out-of-equilibrium crystal nucleation in suspensions of oppositely charged colloids
-
DOI 10.1103/PhysRevLett.99.055501
-
E. Sanz, C. Valeriani, D. Frenkel, and M. Dijkstra, Phys. Rev. Lett. 99, 055501 (2007). 10.1103/PhysRevLett.99.055501 (Pubitemid 47210246)
-
(2007)
Physical Review Letters
, vol.99
, Issue.5
, pp. 055501
-
-
Sanz, E.1
Valeriani, C.2
Frenkel, D.3
Dijkstra, M.4
-
82
-
-
84856746025
-
-
2)1/3; the remaining two fitted terms serve primarily to shift the curve appropriately, as the simulation data curve goes through zero at a cluster size of 2; this is a consequence of the classification parameter not being well suited to extremely small clusters
-
2)1/3; the remaining two fitted terms serve primarily to shift the curve appropriately, as the simulation data curve goes through zero at a cluster size of 2; this is a consequence of the classification parameter not being well suited to extremely small clusters.
-
-
-
-
84
-
-
36149037239
-
-
10.1088/0305-4470/19/4/004
-
J. Rudnick and G. Gaspari, J. Phys. A 19, L191 (1986). 10.1088/0305-4470/19/4/004
-
(1986)
J. Phys. A
, vol.19
, pp. 191
-
-
Rudnick, J.1
Gaspari, G.2
-
86
-
-
0035905815
-
Relationship between structural order and the anomalies of liquid water
-
DOI 10.1038/35053024
-
J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001). 10.1038/35053024 (Pubitemid 32151231)
-
(2001)
Nature
, vol.409
, Issue.6818
, pp. 318-321
-
-
Errington, J.R.1
Debenedetti, P.G.2
-
87
-
-
84856755525
-
-
We remark here that Quigley and Rodger suggest that tends to unity for perfect tetrahedral networks (Ref.); however, since the tetrahedral angle is arccos(-1/3), the sum in Eq. will clearly tend to zero when the network is tetrahedral. We therefore assume that Quigley and Rodger actually reported their results as a function of 1
-
We remark here that Quigley and Rodger suggest that tends to unity for perfect tetrahedral networks (Ref.); however, since the tetrahedral angle is arccos(-1/3), the sum in Eq. will clearly tend to zero when the network is tetrahedral. We therefore assume that Quigley and Rodger actually reported their results as a function of 1 -.
-
-
-
-
88
-
-
69949115243
-
-
10.1080/08927020802647280
-
D. Quigley and P. M. Rodger, Mol. Simul. 35, 613 (2009). 10.1080/08927020802647280
-
(2009)
Mol. Simul.
, vol.35
, pp. 613
-
-
Quigley, D.1
Rodger, P.M.2
-
89
-
-
17444409301
-
Atomistic simulation of the homogeneous nucleation and of the growth of N2 crystallites
-
DOI 10.1063/1.1862626, 104510
-
J.-M. Leyssale, J. Delhommelle, and C. Millot, J. Chem. Phys. 122, 104510 (2005). 10.1063/1.1862626 (Pubitemid 40536581)
-
(2005)
Journal of Chemical Physics
, vol.122
, Issue.10
, pp. 1-10
-
-
Leyssale, J.-M.1
Delhommelle, J.2
Millot, C.3
-
90
-
-
18144425774
-
Sampling rare switching events in biochemical networks
-
DOI 10.1103/PhysRevLett.94.018104, 018104
-
R. J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005). 10.1103/PhysRevLett.94.018104 (Pubitemid 40620266)
-
(2005)
Physical Review Letters
, vol.94
, Issue.1
, pp. 1-4
-
-
Allen, R.J.1
Warren, P.B.2
Ten Wolde, P.R.3
-
91
-
-
34547648612
-
Forward flux sampling-type schemes for simulating rare events: Efficiency analysis
-
DOI 10.1063/1.2198827
-
R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 194111 (2006). 10.1063/1.2198827 (Pubitemid 43782006)
-
(2006)
Journal of Chemical Physics
, vol.124
, Issue.19
, pp. 194111
-
-
Allen, R.J.1
Frenkel, D.2
Ten Wolde, P.R.3
-
92
-
-
30744470375
-
Simulating rare events in equilibrium or nonequilibrium stochastic systems
-
DOI 10.1063/1.2140273, 024102
-
R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 024102 (2006). 10.1063/1.2140273 (Pubitemid 43100174)
-
(2006)
Journal of Chemical Physics
, vol.124
, Issue.2
, pp. 1-16
-
-
Allen, R.J.1
Frenkel, D.2
Ten Wolde, P.R.3
|