메뉴 건너뛰기




Volumn , Issue , 2012, Pages 501-506

Implementation of ANN-based rock failure criteria in numerical simulations

Author keywords

Neural network; Numerical modelling

Indexed keywords

ACCURATE PREDICTION; CIRCULAR TUNNELS; DUCTILE FAILURES; EXPLICIT FORMULATION; FAILURE CRITERIA; HOEK-BROWN; IN-SITU STRESS FIELD; INDIANA; INSTANTANEOUS VALUE; MOHR COULOMB CRITERION; MOHR-COULOMB; NUMERICAL MODELLING; RELATIVE ACCURACY; ROCK FAILURES; TRIAXIAL COMPRESSION TESTS;

EID: 84856728545     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (35)
  • 1
    • 15544382269 scopus 로고    scopus 로고
    • Relation between the Mogi and the Coulomb failure criteria
    • Al-Ajmi, A.M. & Zimmerman, R.W. 2005. Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Min Sci. 42: 431-39.
    • (2005) Int J Rock Mech Min Sci. , vol.42 , pp. 431-439
    • Al-Ajmi, A.M.1    Zimmerman, R.W.2
  • 2
    • 38149119620 scopus 로고    scopus 로고
    • A Hoek- Brown criterion with intrinsic material strength factorization
    • Benz, T., Schwab, R., Kauther, R.A. &Vermeer, P.A. 2008.A Hoek- Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci. 45(2): 210-22.
    • (2008) Int J Rock Mech Min Sci. , vol.45 , Issue.2 , pp. 210-222
    • Benz, T.1    Schwab, R.2    Kauther, R.A.3    Vermeer, P.A.4
  • 3
    • 0016036941 scopus 로고
    • Estimating the strength of rock materials
    • Bieniawski, Z.T. 1974. Estimating the strength of rock materials. J S Afr Inst Min Metall. 74: 312-20.
    • (1974) J S Afr Inst Min Metall. , vol.74 , pp. 312-320
    • Bieniawski, Z.T.1
  • 6
    • 0001681350 scopus 로고
    • On the validity of the "brazilian" test for brittle materials
    • Fairhurst, C. 1964. On the validity of the "Brazilian" test for brittle materials. Int J Rock Mech Min Sci. 1: 515-46.
    • (1964) Int J Rock Mech Min Sci. , vol.1 , pp. 515-546
    • Fairhurst, C.1
  • 7
    • 0015082791 scopus 로고
    • Triaxial strength of rock material
    • Franklin, J.A. 1971. Triaxial strength of rock material. Rock Mech. 3: 86-98.
    • (1971) Rock Mech. , vol.3 , pp. 86-98
    • Franklin, J.A.1
  • 9
    • 0001572447 scopus 로고
    • The strength and stress-strain characteristics of coal in triaxial compression
    • Hobbs, D.W. 1964. The strength and stress-strain characteristics of coal in triaxial compression. J Geol. 72: 214-31.
    • (1964) J Geol. , vol.72 , pp. 214-231
    • Hobbs, D.W.1
  • 10
    • 0021054061 scopus 로고
    • Strength of jointed rock masses
    • Hoek, E. 1983. Strength of jointed rock masses. Geotech. 23(3): 187-223.
    • (1983) Geotech. , vol.23 , Issue.3 , pp. 187-223
    • Hoek, E.1
  • 13
    • 0032473745 scopus 로고    scopus 로고
    • The introduction of neural network system and its applications in rock engineering
    • Huang, Y. & Wfinstedt, S. 1998. The introduction of neural network system and its applications in rock engineering. Eng Geol. 49: 253-60.
    • (1998) Eng Geol , vol.49 , pp. 253-260
    • Huang, Y.1    Wfinstedt, S.2
  • 14
    • 0024880831 scopus 로고    scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik, K. 1997. Multilayer Feed-forward Networks are Universal Approximators. Neural Netw. 2: 359-66.
    • (1997) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1
  • 16
    • 84856706035 scopus 로고    scopus 로고
    • Itasca Inc. Minneapolis, Minnesota, USA
    • Itasca Inc. 2002. User's guide of the FLAC software. Minneapolis, Minnesota, USA.
    • (2002) User's Guide of the FLAC Software
  • 17
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • Jain, A.K., Mao, J. & Mohiddin, K.M. 1996. Artificial neural networks: a tutorial. Comput. 29(3): 31-44.
    • (1996) Comput. , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiddin, K.M.3
  • 18
    • 0022267213 scopus 로고
    • Strength of intact geomechanical materials
    • Johnston, J.W. 1985. Strength of intact geomechanical materials. J Geotech Eng. 111: 730-49.
    • (1985) J Geotech Eng. , vol.111 , pp. 730-749
    • Johnston, J.W.1
  • 19
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • Kanellopoulas, I. &Wilkinson, G.G. 1997. Strategies and best practice for neural network image classification. Int J Remote Sens. 18: 711-25.
    • (1997) Int J Remote Sens. , vol.18 , pp. 711-725
    • Kanellopoulas, I.1    Wilkinson, G.G.2
  • 20
    • 69449098978 scopus 로고    scopus 로고
    • Prediction of blast-induced ground vibration using artificial neural network
    • Khandewal, M. & Singh, T.N. 2009. Prediction of blast-induced ground vibration using artificial neural network. Int J Rock Mech Min Sci. 46: 1214-22.
    • (2009) Int J Rock Mech Min Sci. , vol.46 , pp. 1214-1222
    • Khandewal, M.1    Singh, T.N.2
  • 21
    • 0026469884 scopus 로고
    • Identifying probable failure modes for underground openings using a neural network
    • Lee, C. & Sterling, R. 1992. Identifying probable failure modes for underground openings using a neural network. Int J Rock Mech Min Sci Geomech Abstr. 29: 49-67.
    • (1992) Int J Rock Mech Min Sci Geomech Abstr. , vol.29 , pp. 49-67
    • Lee, C.1    Sterling, R.2
  • 22
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D.J.C. 1992. Bayesian interpolation. Neural Comput. 4: 415-47.
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 23
    • 76349098222 scopus 로고    scopus 로고
    • Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses
    • Majdi, A.&Beiki, M. 2010. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. Int J Rock Mech Min Sci. 47: 246-53.
    • (2010) Int J Rock Mech Min Sci. , vol.47 , pp. 246-253
    • Majdi, A.1    Beiki, M.2
  • 24
    • 0000233926 scopus 로고
    • Pressure dependence of rock strength and transition from brittle fracture to ductile flow
    • Mogi, M. 1966. Pressure dependence of rock strength and transition from brittle fracture to ductile flow, Bull Earthq Res Inst Jpn. 44: 215-32.
    • (1966) Bull Earthq Res Inst Jpn. , vol.44 , pp. 215-232
    • Mogi, M.1
  • 25
    • 0001642281 scopus 로고
    • Welche umstände bedingen die elastizitätsgrenze und den bruch eines materials?
    • Mohr, O. 1900.Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials? VDI-Zeitschrift. 44: 1524.
    • (1900) VDI-Zeitschrift. , vol.44 , pp. 1524
    • Mohr, O.1
  • 26
    • 55749100108 scopus 로고    scopus 로고
    • Evaluation of effect of blasting pattern parameters on back break using neural networks
    • Monjezi, M. & Dehghani, H. 2008. Evaluation of effect of blasting pattern parameters on back break using neural networks. Int J Rock Mech Min Sci. 45: 1446-53.
    • (2008) Int J Rock Mech Min Sci. , vol.45 , pp. 1446-1453
    • Monjezi, M.1    Dehghani, H.2
  • 27
    • 56249122477 scopus 로고
    • The effect of triaxial stress systems on the strength of rock at atmospheric temperature
    • Murrel, S.A.F. 1965. The effect of triaxial stress systems on the strength of rock at atmospheric temperature. Int J Rock Mech. Min Sci. 3: 11-43.
    • (1965) Int J Rock Mech. Min Sci. , vol.3 , pp. 11-43
    • Murrel, S.A.F.1
  • 28
    • 85088053126 scopus 로고    scopus 로고
    • Artificial neural networks as a basis for new generation of rock failure criteria
    • In press
    • Rafiai, H. & Jafari, A. Artificial neural networks as a basis for new generation of rock failure criteria. Int J Rock Mech Min Sci. In press.
    • Int J Rock Mech Min Sci
    • Rafiai, H.1    Jafari, A.2
  • 29
    • 85041051305 scopus 로고
    • Failure of rock in the triaxial shear test
    • Rolla, Missouri, USA
    • Schwartz, A.E. 1964. Failure of rock in the triaxial shear test. Proceedings of 6th Rock Mechanics Symposium. Rolla, Missouri, USA, pp. 109-135.
    • (1964) Proceedings of 6th Rock Mechanics Symposium , pp. 109-135
    • Schwartz, A.E.1
  • 30
    • 0031077904 scopus 로고    scopus 로고
    • Prediction of fracture toughness using artificial neural networks (ANNs)
    • Seibi, A. & Al-Alawi, S.M. 1997. Prediction of fracture toughness using artificial neural networks (ANNs). Eng Fract Mech. 56: 311-19.
    • (1997) Eng Fract Mech. , vol.56 , pp. 311-319
    • Seibi, A.1    Al-Alawi, S.M.2
  • 31
    • 0024470958 scopus 로고
    • An empirical failure criterion for rocks and jointed rock masses
    • Sheorey, P.R., Biswas, A.K. & Choubey, V.D. 1989. An empirical failure criterion for rocks and jointed rock masses. Eng Geol. 26: 141-59.
    • (1989) Eng Geol. , vol.26 , pp. 141-159
    • Sheorey, P.R.1    Biswas, A.K.2    Choubey, V.D.3
  • 33
    • 30344474020 scopus 로고    scopus 로고
    • Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation
    • Sonmez, H., Gokceoglu, C., Nefeslioglu, H.A. & Kayabasi, A. 2006. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci. 43: 224-35.
    • (2006) Int J Rock Mech Min Sci. , vol.43 , pp. 224-235
    • Sonmez, H.1    Gokceoglu, C.2    Nefeslioglu, H.A.3    Kayabasi, A.4
  • 34
    • 77954031500 scopus 로고    scopus 로고
    • Empirical models to predict mean cutting forces on point-attack pick cutters
    • Tiryaki, B., Boland, J.N. & Li, XS. 2010. Empirical models to predict mean cutting forces on point-attack pick cutters. Int J Rock Mech Min Sci. 47: 858-64.
    • (2010) Int J Rock Mech Min Sci. , vol.47 , pp. 858-864
    • Tiryaki, B.1    Boland, J.N.2    Li, X.S.3
  • 35
    • 0026258606 scopus 로고
    • Application of neural network models to rock mechanics and rock engineering
    • Zhang, Q., Song, J. & Nie, X. 1991. Application of neural network models to rock mechanics and rock engineering. Int J Rock Mech Min Sci Geomech Abstr. 28: 535-40.
    • (1991) Int J Rock Mech Min Sci Geomech Abstr. , vol.28 , pp. 535-540
    • Zhang, Q.1    Song, J.2    Nie, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.