메뉴 건너뛰기




Volumn 28, Issue 2, 2012, Pages 543-552

A comparative analysis of data mining methods in predicting NCAA bowl outcomes

Author keywords

Classification; College football; Knowledge discovery; Machine learning; Prediction; Regression

Indexed keywords


EID: 84856708562     PISSN: 01692070     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijforecast.2011.05.002     Document Type: Article
Times cited : (67)

References (29)
  • 1
    • 0031483451 scopus 로고    scopus 로고
    • Robust sports ratings based on least absolute errors
    • Bassett G.W. Robust sports ratings based on least absolute errors. The American Statistician 1997, 51:99-105.
    • (1997) The American Statistician , vol.51 , pp. 99-105
    • Bassett, G.W.1
  • 5
    • 84856728973 scopus 로고    scopus 로고
    • A consistent weighted ranking scheme with an application to NCAA college football rankings. CEPR discussion papers 5239.
    • Fainmesser, I., Fershtman, C., & Gandal, N. (2009). A consistent weighted ranking scheme with an application to NCAA college football rankings. CEPR discussion papers 5239.
    • (2009)
    • Fainmesser, I.1    Fershtman, C.2    Gandal, N.3
  • 8
    • 84949164445 scopus 로고
    • Predictions for national football league games via linear-model methodology
    • Harville D.A. Predictions for national football league games via linear-model methodology. Journal of the American Statistical Association 1980, 75(371):516-524.
    • (1980) Journal of the American Statistical Association , vol.75 , Issue.371 , pp. 516-524
    • Harville, D.A.1
  • 9
    • 0037365007 scopus 로고    scopus 로고
    • The selection or seeding of college basketball or football teams for postseason competition
    • Harville D.A. The selection or seeding of college basketball or football teams for postseason competition. Journal of the American Statistical Association 2003, 98:17-27.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 17-27
    • Harville, D.A.1
  • 12
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward network
    • Hornik K., Stinchcombe M., White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward network. Neural Networks 1990, 3:359-366.
    • (1990) Neural Networks , vol.3 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 33749652616 scopus 로고    scopus 로고
    • Predicting football results using Bayesian nets and other machine learning techniques
    • Joseph A., Fenton N.E., Neil M. Predicting football results using Bayesian nets and other machine learning techniques. Knowledge-Based Systems 2006, 19(7):544-553.
    • (2006) Knowledge-Based Systems , vol.19 , Issue.7 , pp. 544-553
    • Joseph, A.1    Fenton, N.E.2    Neil, M.3
  • 16
    • 84856744560 scopus 로고    scopus 로고
    • An artificial neural network approach to college football prediction and ranking. Technical Paper. University of Wisconsin, Electrical and Computer Engineering Department.
    • Pardee, M. (1999). An artificial neural network approach to college football prediction and ranking. Technical Paper. University of Wisconsin, Electrical and Computer Engineering Department.
    • (1999)
    • Pardee, M.1
  • 17
    • 0030216953 scopus 로고    scopus 로고
    • Neural network quarterbacking
    • Purucker M. Neural network quarterbacking. IEEE Potentials 1996, 15(3):9-15.
    • (1996) IEEE Potentials , vol.15 , Issue.3 , pp. 9-15
    • Purucker, M.1
  • 18
    • 28144444822 scopus 로고    scopus 로고
    • Football predictions based on a fuzzy model with genetic and neural tuning
    • Rotshtein P., Posner M., Rakityanskaya A.B. Football predictions based on a fuzzy model with genetic and neural tuning. Cybernetics and Systems Analysis 2005, 41(4):619-630.
    • (2005) Cybernetics and Systems Analysis , vol.41 , Issue.4 , pp. 619-630
    • Rotshtein, P.1    Posner, M.2    Rakityanskaya, A.B.3
  • 20
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: the new blueprint for data mining
    • Shearer C. The CRISP-DM model: the new blueprint for data mining. Journal of Data Warehousing 2000, 5:13-22.
    • (2000) Journal of Data Warehousing , vol.5 , pp. 13-22
    • Shearer, C.1
  • 21
    • 34548247234 scopus 로고    scopus 로고
    • The comparative accuracy of judgmental and model forecasts of American football games
    • Song C.-U., Boulier B.L., Stekler H.O. The comparative accuracy of judgmental and model forecasts of American football games. International Journal of Forecasting 2007, 23(3):405-413.
    • (2007) International Journal of Forecasting , vol.23 , Issue.3 , pp. 405-413
    • Song, C.-U.1    Boulier, B.L.2    Stekler, H.O.3
  • 22
    • 0000504103 scopus 로고
    • Improved least squares football, basketball, and soccer predictions
    • Stefani R.T. Improved least squares football, basketball, and soccer predictions. IEEE Transactions on Systems, Man and Cybernetics 1980, 10:116-123.
    • (1980) IEEE Transactions on Systems, Man and Cybernetics , vol.10 , pp. 116-123
    • Stefani, R.T.1
  • 23
    • 77952292389 scopus 로고
    • Applications of statistical methods to American football
    • Stefani R.T. Applications of statistical methods to American football. Journal of Applied Statistics 1987, 14(1):61-73.
    • (1987) Journal of Applied Statistics , vol.14 , Issue.1 , pp. 61-73
    • Stefani, R.T.1
  • 25
    • 0003176431 scopus 로고
    • Who's number 1 in college football? and how might we decide?
    • Stern H.S. Who's number 1 in college football?. and how might we decide?. Chance Magazine 1995, 8(3):7-14.
    • (1995) Chance Magazine , vol.8 , Issue.3 , pp. 7-14
    • Stern, H.S.1
  • 26
    • 84856728969 scopus 로고
    • A deterministic prediction model for the American game of football
    • Trono J.A. A deterministic prediction model for the American game of football. ACM SIGSIM Simulation Digest 1988, 19(1):26-53.
    • (1988) ACM SIGSIM Simulation Digest , vol.19 , Issue.1 , pp. 26-53
    • Trono, J.A.1
  • 29
    • 84856734947 scopus 로고    scopus 로고
    • A new application of linear modeling in the prediction of college football bowl outcomes and the development of team ratings
    • West B.T., Lamsal M. A new application of linear modeling in the prediction of college football bowl outcomes and the development of team ratings. Journal of Quantitative Analysis in Sports 2008, 4(3):1-19.
    • (2008) Journal of Quantitative Analysis in Sports , vol.4 , Issue.3 , pp. 1-19
    • West, B.T.1    Lamsal, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.