메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1700-1707

Incremental on-line semi-supervised learning for segmenting the left ventricle of the heart from ultrasound data

Author keywords

[No Author keywords available]

Indexed keywords

ACQUISITION PROCESS; AUTOMATIC SEGMENTATIONS; DEEP LEARNING; INCREMENTAL LEARNING; LEFT VENTRICLES; SEGMENTATION METHODS; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; STATISTICAL MODELS; STATISTICAL PATTERN RECOGNITION; TRAINING SETS; ULTRASOUND DATA;

EID: 84856682710     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126433     Document Type: Conference Paper
Times cited : (14)

References (20)
  • 2
    • 77956009389 scopus 로고    scopus 로고
    • Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures
    • 5,6,7
    • G. Carneiro and J. Nascimento. Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures. In CVPR,201O. 1,4,5,6,7
    • (2010) CVPR , vol.1 , pp. 4
    • Carneiro, G.1    Nascimento, J.2
  • 3
    • 3142723329 scopus 로고    scopus 로고
    • Robust realtime myocardial border tracking for echo cardiography: An information fusion approach
    • 1
    • D. Comaniciu, X. Zhou, and S. Krishnan. Robust realtime myocardial border tracking for echo cardiography: An information fusion approach. IEEE Trans. Med. Imag., 23(7):849-860, 2004. 1
    • (2004) IEEE Trans. Med. Imag. , vol.23 , Issue.7 , pp. 849-860
    • Comaniciu, D.1    Zhou, X.2    Krishnan, S.3
  • 4
    • 39149130340 scopus 로고    scopus 로고
    • Clinical utility of automated assessment of left ventricular ejection fraction using artificial intelligenceassisted border detection
    • 1
    • Ha R. et al. Clinical utility of automated assessment of left ventricular ejection fraction using artificial intelligenceassisted border detection. American Heart Journal, 155(3):562-570, 2008. 1
    • (2008) American Heart Journal , vol.155 , Issue.3 , pp. 562-570
    • Ha, R.1
  • 7
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 2,4
    • G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507,2006. 2,4
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 9
    • 33745173515 scopus 로고    scopus 로고
    • Online detection and classification of moving objects using progressively improving detectors
    • 4
    • O. Javed, S. Ali, and M. Shah. Online detection and classification of moving objects using progressively improving detectors. In CVPR, 2005. 1,2,4
    • (2005) CVPR , vol.1 , pp. 2
    • Javed, O.1    Ali, S.2    Shah, M.3
  • 10
    • 85088333193 scopus 로고    scopus 로고
    • Qualitative probabilities for image interpretation
    • A. Jepson and R. Mann. Qualitative probabilities for image interpretation. In ICCV , 1999. 5
    • (1999) ICCV , vol.5
    • Jepson, A.1    Mann, R.2
  • 11
    • 0344982834 scopus 로고    scopus 로고
    • Unsupervised improvement of visual detectors using co-training
    • 2.4
    • A. Levin, P. Viola, and Y. Freund. Unsupervised improvement of visual detectors using co-training. In ICCV , 2003. 1, 2.4
    • (2003) ICCV , pp. 1
    • Levin, A.1    Viola, P.2    Freund, Y.3
  • 12
    • 51949117474 scopus 로고    scopus 로고
    • An unsupervised, online learning framework for moving object detection
    • V. Nair and J. Clark. An unsupervised, online learning framework for moving object detection. In CVPR, 2004. 1
    • (2004) CVPR , pp. 1
    • Nair, V.1    Clark, J.2
  • 13
    • 40749153509 scopus 로고    scopus 로고
    • Robust shape tracking with multiple models in ultrasound images
    • 2, 5, 6, 7
    • J. C. Nascimento and J. S. Marques. Robust shape tracking with multiple models in ultrasound images. IEEE Trans. Imag. Proc., 17(3):392-406,2008. 2, 5, 6, 7
    • (2008) IEEE Trans. Imag. Proc. , vol.17 , Issue.3 , pp. 392-406
    • Nascimento, J.C.1    Marques, J.S.2
  • 14
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that 'justifies incremental, sparse, and other variants
    • Kluwer Academic Publishers, 2
    • R. Neal and G. Hinton. A view of the em algorithm that 'justifies incremental, sparse, and other variants. In Learning in Graphical Models, pages 355-368. Kluwer Academic Publishers, 1998. 2
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 17
    • 34948885653 scopus 로고    scopus 로고
    • Improving part based object detection by unsupervised, online boosting
    • B. Wu and R. Nevatia. Improving part based object detection by unsupervised, online boosting. In CVPR, 2007. 1,2,4
    • (2007) CVPR , vol.1 , Issue.2 , pp. 4
    • Wu, B.1    Nevatia, R.2
  • 18
    • 54949104993 scopus 로고    scopus 로고
    • Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features
    • 1
    • Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging, 27(11):1668-1681,2008. 1
    • (2008) IEEE Trans. Med. Imaging , vol.27 , Issue.11 , pp. 1668-1681
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5
  • 20
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report 1530, Computer Sciences, University of Wisconsin-Madison
    • X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, 2005. 1,3
    • (2005) Semi-Supervised Learning Literature Survey , vol.1 , pp. 3
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.