메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2312-2319

Efficient Orthogonal Matching Pursuit using sparse random projections for scene and video classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; HADAMARD; HADAMARD TRANSFORMS; JOHNSON-LINDENSTRAUSS TRANSFORMS; LARGE-SCALE PROBLEM; LOCALITY SENSITIVE HASHING; NOVEL TECHNIQUES; OBJECT CLASSIFICATION; ORTHOGONAL MATCHING PURSUIT; PROJECTION ALGORITHMS; PROJECTION MATRIX; RANDOM PROJECTIONS; SCENE CLASSIFICATION; VIDEO ANALYSIS; VIDEO CATEGORIZATION; VIDEO CLASSIFICATION;

EID: 84856672701     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126512     Document Type: Conference Paper
Times cited : (20)

References (34)
  • 1
    • 84878365653 scopus 로고    scopus 로고
    • Database-friendly random projections
    • 1, 2, 3, 4
    • D. Achlioptas. Database-friendly random projections. In Proc PODS, 2001. 1, 2, 3, 4
    • (2001) Proc PODS
    • Achlioptas, D.1
  • 2
    • 33748109164 scopus 로고    scopus 로고
    • Approximate nearest neighbors and the fast johnson-lindenstrauss transform
    • 1, 2, 3, 4, 8
    • N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss transform. In Proc ACM STOC, 2006. 1, 2, 3, 4, 8
    • (2006) Proc ACM STOC
    • Ailon, N.1    Chazelle, B.2
  • 3
    • 84856681217 scopus 로고    scopus 로고
    • An almost optimal unrestricted fast johnsonlindenstrauss transform
    • 3
    • N. Ailon and E. Liberty. An almost optimal unrestricted fast johnsonlindenstrauss transform. In Proc SODA, 2011. 3
    • Proc SODA , vol.2011
    • Ailon, N.1    Liberty, E.2
  • 4
    • 79952530586 scopus 로고    scopus 로고
    • Indexing in large scale image collections: Scaling properties and benchmark
    • 2, 3
    • M. Aly, M. Munich, and P. Perona. Indexing in large scale image collections: Scaling properties and benchmark. In ProcWACV, 2011. 2, 3
    • (2011) ProcWACV
    • Aly, M.1    Munich, M.2    Perona, P.3
  • 5
  • 6
    • 0035789317 scopus 로고    scopus 로고
    • Random projection in dimensionality reduction: Applications to image and text data
    • 2, 3
    • E. Bingham and H. Mannila. Random projection in dimensionality reduction: Applications to image and text data. In Proc SIGKDD, 2001. 2, 3
    • (2001) Proc SIGKDD
    • Bingham, E.1    Mannila, H.2
  • 7
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • 1, 4, 6, 7
    • Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recognition. In Proc CVPR, 2010. 1, 4, 6, 7
    • (2010) Proc CVPR
    • Boureau, Y.-L.1    Bach, F.2    LeCun, Y.3    Ponce, J.4
  • 8
    • 0037844312 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • 2, 3
    • M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proc STOC, 2002. 2, 3
    • (2002) Proc STOC
    • Charikar, M.S.1
  • 10
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • 4, 5
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Proc., 2006. 4, 5
    • (2006) IEEE Trans. Image Proc.
    • Elad, M.1    Aharon, M.2
  • 11
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • 1, 6, 7
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In Proc CVPR, 2005. 1, 6, 7
    • (2005) Proc CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 12
    • 80052365596 scopus 로고    scopus 로고
    • Orthogonal matching pursuit from noisy measurements: A new analysis
    • 2
    • A. K. Fletcher and S. Rangan. Orthogonal matching pursuit from noisy measurements: A new analysis. In Proc NIPS, 2009. 2
    • (2009) Proc NIPS
    • Fletcher, A.K.1    Rangan, S.2
  • 13
    • 33244454915 scopus 로고    scopus 로고
    • Approximation of functions over redundant dictionaries using coherence
    • 2, 3
    • A. C. Gilbert, S. Muthukrishnan, and M. J. Strauss. Approximation of functions over redundant dictionaries using coherence. In Proc. SODA, 2003. 2, 3
    • (2003) Proc. SODA
    • Gilbert, A.C.1    Muthukrishnan, S.2    Strauss, M.J.3
  • 15
    • 0001907042 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • 2, 3
    • P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In Proc. STOC, 1998. 2, 3
    • (1998) Proc. STOC
    • Indyk, P.1    Motwani, R.2
  • 16
    • 77953184849 scopus 로고    scopus 로고
    • Kernelized locality-sensitive hashing for scalable image search
    • 2, 3
    • B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In Proc ICCV, 2009. 2, 3
    • (2009) Proc ICCV
    • Kulis, B.1    Grauman, K.2
  • 17
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 7
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proc. CVPR, 2006. 7
    • (2006) Proc. CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 18
    • 33749573641 scopus 로고    scopus 로고
    • Very sparse random projections
    • 1, 2, 3, 4, 8
    • P. Li, T. J. Hastie, and K.W. Church. Very sparse random projections. In Proc SIGKDD, 2006. 1, 2, 3, 4, 8
    • (2006) Proc SIGKDD
    • Li, P.1    Hastie, T.J.2    Church, K.W.3
  • 19
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • 2, 6
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In Proc ICML, 2009. 2, 6
    • (2009) Proc ICML
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 20
    • 27644547620 scopus 로고    scopus 로고
    • A performance evaluation of local descriptors
    • 7
    • K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE Trans. PAMI, 2005. 7
    • (2005) IEEE Trans. PAMI
    • Mikolajczyk, K.1    Schmid, C.2
  • 21
    • 57949093358 scopus 로고    scopus 로고
    • Cosamp: Iterative signal recovery from incomplete and inaccurate samples
    • 2
    • D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. App. Comput. Harmonic Analysis, 2008. 2
    • (2008) App. Comput. Harmonic Analysis
    • Needell, D.1    Tropp, J.A.2
  • 22
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • 1
    • B. A. Olhausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research, 1997. 1
    • (1997) Vision Research
    • Olhausen, B.A.1    Field, D.J.2
  • 25
    • 77956008921 scopus 로고    scopus 로고
    • Rapid face recognition using hashing
    • 2
    • Q. Shi, H. Li, and C. Shen. Rapid face recognition using hashing. In Proc CVPR, 2010. 2
    • (2010) Proc CVPR
    • Shi, Q.1    Li, H.2    Shen, C.3
  • 26
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • 6, 7
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In Proc ICCV, 2003. 6, 7
    • (2003) Proc ICCV
    • Sivic, J.1    Zisserman, A.2
  • 27
    • 77956001401 scopus 로고    scopus 로고
    • Finding meaning on youtube: Tag recommendation and category discovery
    • 6
    • G. Toderici, H. Aradhye, M. Pasca, L. Sbaiz, and J. Yagnik. Finding meaning on youtube: Tag recommendation and category discovery. In Proc CVPR, 2010. 6
    • (2010) Proc CVPR
    • Toderici, G.1    Aradhye, H.2    Pasca, M.3    Sbaiz, L.4    Yagnik, J.5
  • 28
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • 1, 2
    • J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 2007. 1, 2
    • (2007) IEEE Trans. Inform. Theory
    • Tropp, J.A.1    Gilbert, A.C.2
  • 30
    • 77955988108 scopus 로고    scopus 로고
    • Semi-supervised hashing for scalable image retrieval
    • 2, 8
    • J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image retrieval. In Proc CVPR, 2010. 2, 8
    • (2010) Proc CVPR
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 31
    • 85012251675 scopus 로고    scopus 로고
    • A new alternating minimization algorithm for total variation image reconstruction
    • 5, 6, 7
    • Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algorithm for total variation image reconstruction. SIAM Jnl Imaging Sci, 2008. 5, 6, 7
    • (2008) SIAM Jnl Imaging Sci
    • Wang, Y.1    Yang, J.2    Yin, W.3    Zhang, Y.4
  • 32
    • 77955988704 scopus 로고    scopus 로고
    • Youtubecat: Learning to categorize wild web videos
    • 6, 7
    • Z.Wang, M. Zhao, Y. Song, S. Kumar, and B. Li. Youtubecat: Learning to categorize wild web videos. In Proc. CVPR, 2010. 6, 7
    • (2010) Proc. CVPR
    • Wang, Z.1    Zhao, M.2    Song, Y.3    Kumar, S.4    Li, B.5
  • 33
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • 1, 4, 6, 7
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In Proc CVPR, 2009. 1, 4, 6, 7
    • (2009) Proc CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.