메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1503-1510

Spectral learning of latent semantics for action recognition

Author keywords

[No Author keywords available]

Indexed keywords

ACTION RECOGNITION; DATA SETS; GRAPH CONSTRUCTION; HIGH-LEVEL FEATURES; HISTOGRAM INTERSECTION KERNELS; HYPER GRAPH; LARGE VOCABULARY; LATENT SEMANTIC ANALYSIS; LATENT SEMANTICS; LINEAR RECONSTRUCTION; MANIFOLD LEARNING; MID-LEVEL FEATURES; SEMANTIC GAP; SPARSE CODING; SPECTRAL CLUSTERING; SPECTRAL LEARNING; SPECTRAL METHODS; STANDARD ACTION; TOPIC MODEL;

EID: 84856661234     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126408     Document Type: Conference Paper
Times cited : (16)

References (28)
  • 1
    • 33749245328 scopus 로고    scopus 로고
    • Higher order learning with graphs
    • 4
    • S. Agarwal, K. Branson, and S. Belongie. Higher order learning with graphs. In ICML, pages 17-24, 2006. 2, 4
    • (2006) ICML , vol.2 , pp. 17-24
    • Agarwal, S.1    Branson, K.2    Belongie, S.3
  • 2
    • 0037016775 scopus 로고    scopus 로고
    • The isomap algorithm and topological stability
    • 5,. 6
    • M. Balasubramanian and E. Schwartz. The isomap algorithm and topological stability. Science, 295(5552):7-7, 2002. 5, 6
    • (2002) Science , vol.295 , Issue.5552 , pp. 7-7
    • Balasubramanian, M.1    Schwartz, E.2
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • 5, 6
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003. 5, 6
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • 1
    • D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, 3:993-1022, 2003. 1
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 6
    • 70450196535 scopus 로고    scopus 로고
    • Recognising action as clouds of space-time interest points
    • 1
    • M. Bregonzio, S. Gong, and T. Xiang. Recognising action as clouds of space-time interest points. In CVPR, pages 1948-1955, 2009. 1
    • (2009) CVPR , pp. 1948-1955
    • Bregonzio, M.1    Gong, S.2    Xiang, T.3
  • 7
    • 78349269463 scopus 로고    scopus 로고
    • Action detection using multiple spatial-temporal interest point features
    • 7
    • L. Cao, Y. Tian, Z. Liu, B. Yao, Z. Zhang, and T. Huang. Action detection using multiple spatial-temporal interest point features. In ICME, pages 340-345, 2010. 2, 7
    • (2010) ICME , vol.2 , pp. 340-345
    • Cao, L.1    Tian, Y.2    Liu, Z.3    Yao, B.4    Zhang, Z.5    Huang, T.6
  • 9
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal -1-norm solution is also the sparsest solution
    • 2, 3
    • D. Donoho. For most large underdetermined systems of linear equations the minimal -1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(7):797-829, 2004. 2, 3
    • (2004) Communications on Pure and Applied Mathematics , vol.59 , Issue.7 , pp. 797-829
    • Donoho, D.1
  • 10
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • 1
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 41:177-196, 2001. 1
    • (2001) Machine Learning , vol.41 , pp. 177-196
    • Hofmann, T.1
  • 11
    • 77955993558 scopus 로고    scopus 로고
    • Learning a hierarchy of discriminative space-time neighborhood features for human action recognition
    • 7
    • A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In CVPR, pages 2046-2053, 2010. 1, 7
    • (2010) CVPR , vol.1 , pp. 2046-2053
    • Kovashka, A.1    Grauman, K.2
  • 12
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization
    • 2
    • S. Lafon and A. Lee. Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization. TPAMI, 28(9):1393-1403, 2006. 2
    • (2006) TPAMI , vol.28 , Issue.9 , pp. 1393-1403
    • Lafon, S.1    Lee, A.2
  • 13
    • 51949083365 scopus 로고    scopus 로고
    • Learning realistic human actions from movies
    • I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In CVPR, 2008. 1, 2, 7
    • (2008) CVPR , vol.1 , Issue.2 , pp. 7
    • Laptev, I.1    Marszalek, M.2    Schmid, C.3    Rozenfeld, B.4
  • 14
    • 70450203660 scopus 로고    scopus 로고
    • Recognizing realistic actions from videos in the wild
    • 2, 5, 6, 7
    • J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos in the wild. In CVPR, pages 1996-2003, 2009. 1, 2, 5, 6, 7
    • (2009) CVPR , vol.1 , pp. 1996-2003
    • Liu, J.1    Luo, J.2    Shah, M.3
  • 15
    • 51949085157 scopus 로고    scopus 로고
    • Learning human actions via information maximization
    • 1, 2, 5, 6, 7
    • J. Liu and M. Shah. Learning human actions via information maximization. In CVPR, 2008. 1, 2, 5, 6, 7
    • (2008) CVPR
    • Liu, J.1    Shah, M.2
  • 16
    • 70450170628 scopus 로고    scopus 로고
    • Learning semantic visual vocabularies using diffusion distance
    • 2, 3, 5, 6, 7
    • J. Liu, Y. Yang, and M. Shah. Learning semantic visual vocabularies using diffusion distance. In CVPR, pages 461-468, 2009. 2, 3, 5, 6, 7
    • (2009) CVPR , pp. 461-468
    • Liu, J.1    Yang, Y.2    Shah, M.3
  • 17
    • 54549084432 scopus 로고    scopus 로고
    • Tracking and recognizing actions of multiple hockey players using the boosted particle filter
    • 1
    • W.-L. Lu, K. Okuma, and J. Little. Tracking and recognizing actions of multiple hockey players using the boosted particle filter. Image and Vision Computing, 27(1-2):189-205, 2009. 1
    • (2009) Image and Vision Computing , vol.27 , Issue.1-2 , pp. 189-205
    • Lu, W.-L.1    Okuma, K.2    Little, J.3
  • 19
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • 1, 2, 3, 7
    • J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. IJCV, 79(3):299-318, 2008. 1, 2, 3, 7
    • (2008) IJCV , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.1    Wang, H.2    Fei-Fei, L.3
  • 20
    • 70350060041 scopus 로고    scopus 로고
    • Statistical motion information extraction and representation for semantic video analysis
    • 2, 7
    • G. Papadopoulos, A. Briassouli, V. Mezaris, I. Kompatsiaris, and M. Strintzis. Statistical motion information extraction and representation for semantic video analysis. TCSVT, 19(10):1513-1528, 2009. 2, 7
    • (2009) TCSVT , vol.19 , Issue.10 , pp. 1513-1528
    • Papadopoulos, G.1    Briassouli, A.2    Mezaris, V.3    Kompatsiaris, I.4    Strintzis, M.5
  • 21
    • 29344442898 scopus 로고    scopus 로고
    • View invariance for human action recognition
    • 1
    • V. Parameswaran and R. Chellappa. View invariance for human action recognition. IJCV, 66(1):83-101, 2006. 1
    • (2006) IJCV , vol.66 , Issue.1 , pp. 83-101
    • Parameswaran, V.1    Chellappa, R.2
  • 22
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • 1, 2, 5, 7
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In ICPR, volume 3, pages 32-36, 2004. 1, 2, 5, 7
    • (2004) ICPR , vol.3 , pp. 32-36
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3
  • 23
    • 65449185036 scopus 로고    scopus 로고
    • Hypergraph spectral learning for multi-label classification
    • 2, 4
    • L. Sun, S. Ji, and J. Ye. Hypergraph spectral learning for multi-label classification. In KDD, pages 668-676, 2008. 2, 4
    • (2008) KDD , pp. 668-676
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 24
    • 55149089260 scopus 로고    scopus 로고
    • Machine recognition of human activities: A survey
    • 1
    • P. Turaga, R. Chellappa, V. Subrahmanian, and O. Udrea. Machine recognition of human activities: A survey. TCSVT, 18(11):1473-1488, 2008. 1
    • (2008) TCSVT , vol.18 , Issue.11 , pp. 1473-1488
    • Turaga, P.1    Chellappa, R.2    Subrahmanian, V.3    Udrea, O.4
  • 25
    • 69549129405 scopus 로고    scopus 로고
    • Human action recognition by semilatent topic models
    • 1, 2, 3
    • Y. Wang and G. Mori. Human action recognition by semilatent topic models. TPAMI, 31(10):1762-1774, 2009. 1, 2, 3
    • (2009) TPAMI , vol.31 , Issue.10 , pp. 1762-1774
    • Wang, Y.1    Mori, G.2
  • 26
    • 61549128441 scopus 로고    scopus 로고
    • Robust face recognition via sparse representation
    • 2, 3
    • J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation. TPAMI, 31(2):210-227, 2009. 2, 3
    • (2009) TPAMI , vol.31 , Issue.2 , pp. 210-227
    • Wright, J.1    Yang, A.2    Ganesh, A.3    Sastry, S.4    Ma, Y.5
  • 27
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • 2
    • S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. Graph embedding and extensions: A general framework for dimensionality reduction. TPAMI, 29(1):40-51, 2007. 2
    • (2007) TPAMI , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.4    Yang, Q.5    Lin, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.