메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2174-2181

Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering

Author keywords

[No Author keywords available]

Indexed keywords

APPEARANCE MODELS; BACKGROUND SUBTRACTION; BACKGROUND SUBTRACTION ALGORITHMS; BAYESIAN FILTERING; BELIEF PROPAGATION; CURRENT FRAME; GRAPHICAL MODEL; HYBRID INFERENCE; MOTION FIELDS; MOVING CAMERAS; NON-PARAMETRIC BELIEF PROPAGATION;

EID: 84856657267     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126494     Document Type: Conference Paper
Times cited : (76)

References (23)
  • 1
    • 33645307063 scopus 로고    scopus 로고
    • Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    • A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 90:1151- 1163, 2002. 1
    • (2002) Proceedings of IEEE , vol.90 , Issue.1 , pp. 1151-1163
    • Elgammal, A.1    Duraiswami, R.2    Harwood, D.3    Davis, L.4
  • 2
    • 33744951081 scopus 로고    scopus 로고
    • Efficient belief propagation for early vision
    • 4, 5, 6
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision. IJCV, 70(1):41-54, 2006. 4, 5, 6
    • (2006) IJCV , vol.70 , Issue.1 , pp. 41-54
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 3
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • 3, 6
    • S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE TPAMI, 6(6):721-741, 1984. 3, 6
    • (1984) IEEE TPAMI , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 4
    • 13344250629 scopus 로고    scopus 로고
    • Sequential kernel density approximation through mode propagation: Applications to background modeling
    • B. Han, D. Comaniciu, and L. Davis. Sequential kernel density approximation through mode propagation: Applications to background modeling. In ACCV, 2004. 1
    • (2004) ACCV , vol.1
    • Han, B.1    Comaniciu, D.2    Davis, L.3
  • 5
    • 0344034707 scopus 로고    scopus 로고
    • Statistical background subtraction for a mobile observer
    • E. Hayman and J. O. Eklundh. Statistical background subtraction for a mobile observer. In ICCV, 2003. 1
    • (2003) ICCV , vol.1
    • Hayman, E.1    Eklundh, J.O.2
  • 6
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foreground-background segmentation using codebook model
    • 1
    • K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time foreground-background segmentation using codebook model. Real- Time Imaging, 11(3):172-185, 2005. 1
    • (2005) Real- Time Imaging , vol.11 , Issue.3 , pp. 172-185
    • Kim, K.1    Chalidabhongse, T.2    Harwood, D.3    Davis, L.4
  • 7
    • 18144412408 scopus 로고    scopus 로고
    • Effective gaussian mixture learning for video background subtraction
    • 1
    • D. Lee. Effective gaussian mixture learning for video background subtraction. IEEE TPAMI, 27(5):827-832, 2005. 1
    • (2005) IEEE TPAMI , vol.27 , Issue.5 , pp. 827-832
    • Lee, D.1
  • 9
    • 0033680842 scopus 로고    scopus 로고
    • Scene modeling for wide area surveillance and image synthesis
    • A. Mittal and D. Huttenlocher. Scene modeling for wide area surveillance and image synthesis. In CVPR, 2000. 1
    • (2000) CVPR , vol.1
    • Mittal, A.1    Huttenlocher, D.2
  • 10
    • 5044221727 scopus 로고    scopus 로고
    • Motion-based backgroudn subtraction using adaptive kernel density estimation
    • A. Mittal and N. Paragios. Motion-based backgroudn subtraction using adaptive kernel density estimation. In CVPR, 2004. 1
    • (2004) CVPR , vol.1
    • Mittal, A.1    Paragios, N.2
  • 12
    • 33845573420 scopus 로고    scopus 로고
    • Particle video: Long-range motion estimation using point trajectories
    • P. Sand and S. Teller. Particle video: Long-range motion estimation using point trajectories. In CVPR, pages 2195-2202, 2006. 1, 6
    • (2006) CVPR , vol.1 , Issue.6 , pp. 2195-2202
    • Sand, P.1    Teller, S.2
  • 13
    • 0041439660 scopus 로고    scopus 로고
    • Background subtraction based on coocurence of image variations
    • M. Seki, T.Wada, H. Fujiwara, and K. Sumi. Background subtraction based on coocurence of image variations. In CVPR, 2003. 1
    • (2003) CVPR , vol.1
    • Seki, M.1    Wada, T.2    Fujiwara, H.3    Sumi, K.4
  • 14
    • 77953221169 scopus 로고    scopus 로고
    • Background subtraction for freely moving cameras
    • 8
    • Y. Sheikh, O. Javed, and T. Kanade. Background subtraction for freely moving cameras. In ICCV, 2009. 1, 6, 7, 8
    • (2009) ICCV , vol.1 , Issue.6 , pp. 7
    • Sheikh, Y.1    Javed, O.2    Kanade, T.3
  • 15
    • 24644476577 scopus 로고    scopus 로고
    • Bayesian object detection in dynamic scenes
    • Y. Sheikh and M. Shah. Bayesian object detection in dynamic scenes. In CVPR, 2005.
    • (2005) CVPR
    • Sheikh, Y.1    Shah, M.2
  • 16
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using realtime tracking
    • 1
    • C. Stauffer andW. Grimson. Learning patterns of activity using realtime tracking. IEEE TPAMI, 22(8):747-757, 2000. 1
    • (2000) IEEE TPAMI , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.2
  • 18
    • 0026943737 scopus 로고
    • Shape and motion from image streams under orthography: A factorization method
    • 1
    • C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, 1992. 1
    • (1992) IJCV , vol.9 , Issue.2 , pp. 137-154
    • Tomasi, C.1    Kanade, T.2
  • 19
    • 0033285765 scopus 로고    scopus 로고
    • Wallflower: Principles and practice of background maintenance
    • K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice of background maintenance. In ICCV, pages 255- 261, 1999. 1
    • (1999) ICCV , vol.1 , pp. 255-261
    • Toyama, K.1    Krumm, J.2    Brumitt, B.3    Meyers, B.4
  • 20
    • 34948881815 scopus 로고    scopus 로고
    • A benchmark for the comparison of 3-d motion segmentation algorithms
    • R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithms. In CVPR, 2007. 6
    • (2007) CVPR , vol.6
    • Tron, R.1    Vidal, R.2
  • 22
    • 84856646718 scopus 로고    scopus 로고
    • Detecting motion regions in the presence of a string parallax from a moving camera by multiview geometric constraints
    • 1
    • C. Yuan, G. Medioni, J. Kang, and I. Cohen. Detecting motion regions in the presence of a string parallax from a moving camera by multiview geometric constraints. IEEE TPAMI, 20, 2007. 1
    • (2007) IEEE TPAMI , vol.20
    • Yuan, C.1    Medioni, G.2    Kang, J.3    Cohen, I.4
  • 23
    • 0344551957 scopus 로고    scopus 로고
    • Segmenting foreground objects from a dynamic textured background via a robust Kalman filter
    • J. Zhong and S. Sclaroff. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. In CVPR, pages 44-50, 2003. 1
    • (2003) CVPR , vol.1 , pp. 44-50
    • Zhong, J.1    Sclaroff, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.