메뉴 건너뛰기




Volumn , Issue , 2011, Pages 475-482

Long term video segmentation through pixel level spectral clustering on GPUs

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING TECHNIQUES; COMPUTATIONAL POWER; DATA SETS; MOTION SEGMENTATION; NUMERICAL ALGORITHMS; OPTICAL FLOW ALGORITHM; OVER SEGMENTATION; PIXEL LEVEL; PROBABILISTIC REASONING; SEGMENTATION TECHNIQUES; SPECTRAL CLUSTERING; SPECTRAL SEGMENTATION; SUPERPIXELS; TIME-PERIODS; VIDEO SEGMENTATION;

EID: 84856645764     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2011.6130281     Document Type: Conference Paper
Times cited : (24)

References (23)
  • 1
    • 84927751020 scopus 로고    scopus 로고
    • From contours to regions: An empirical evaluation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to regions: An empirical evaluation. In CVPR, 2009.
    • (2009) CVPR
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 77953223104 scopus 로고    scopus 로고
    • Video object segmentation by tracking regions
    • W. Brendel and S. Todorovic. Video object segmentation by tracking regions. In ICCV, 2009.
    • (2009) ICCV
    • Brendel, W.1    Todorovic, S.2
  • 4
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010.
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 7
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • P. Felzenszwalb and D. Huttenlocker. Efficient graph-based image segmentation. In IJCV, 2004.
    • (2004) IJCV
    • Felzenszwalb, P.1    Huttenlocker, D.2
  • 9
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph-based video segmentation
    • June
    • M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based video segmentation. CVPR, page 8, June 2010.
    • (2010) CVPR , pp. 8
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.4
  • 10
    • 78149328373 scopus 로고    scopus 로고
    • Occlusion boundary detection using pseudo-depth
    • Berlin, Heidelberg Springer-Verlag
    • X. He and A. Yuille. Occlusion boundary detection using pseudo-depth. In ECCV, ECCV'10, pages 539-552, Berlin, Heidelberg, 2010. Springer-Verlag.
    • (2010) ECCV, ECCV'10 , pp. 539-552
    • He, X.1    Yuille, A.2
  • 11
    • 77956001212 scopus 로고    scopus 로고
    • Video object segmentation by hypergraph cut
    • Y. Huang, Q. Liu, and D. Metaxas. Video object segmentation by hypergraph cut. CVPR, page 8, 2009.
    • (2009) CVPR , pp. 8
    • Huang, Y.1    Liu, Q.2    Metaxas, D.3
  • 12
    • 51949108476 scopus 로고    scopus 로고
    • Using contours to detect and localize junctions in natural images
    • June
    • M. Maire, P. Arbeĺaez, C. Fowlkes, and J. Malik. Using contours to detect and localize junctions in natural images. CVPR, pages 1-8, June 2008.
    • (2008) CVPR , pp. 1-8
    • Maire, M.1    Arbeĺaez, P.2    Fowlkes, C.3    Malik, J.4
  • 13
    • 51949116658 scopus 로고    scopus 로고
    • Motion segmentation via robust subspace separation in the presence of outlying, incomplete or corrupted trajectories
    • S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation via robust subspace separation in the presence of outlying, incomplete or corrupted trajectories. In CVPR, 2008.
    • (2008) CVPR
    • Rao, S.1    Tron, R.2    Vidal, R.3    Ma, Y.4
  • 14
    • 0344922553 scopus 로고    scopus 로고
    • Motion segmentation and tracking using normalized cuts
    • J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. ICCV, page 7, 1998.
    • (1998) ICCV , pp. 7
    • Shi, J.1    Malik, J.2
  • 15
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence
    • Aug
    • J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888-905, Aug 2000.
    • (2000) IEEE Transactions on , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 17
    • 50649121359 scopus 로고    scopus 로고
    • Learning to find object boundaries using motion cues
    • Aug
    • A. Stein, D. Hoiem, and M. Hebert. Learning to find object boundaries using motion cues. ICCV, page 8, Aug 2007.
    • (2007) ICCV , pp. 8
    • Stein, A.1    Hoiem, D.2    Hebert, M.3
  • 18
    • 79952783476 scopus 로고    scopus 로고
    • Dense point trajectories by GPU-accelerated large displacement optical flow
    • N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by GPU-accelerated large displacement optical flow. In ECCV, 2010.
    • (2010) ECCV
    • Sundaram, N.1    Brox, T.2    Keutzer, K.3
  • 19
    • 80052926908 scopus 로고    scopus 로고
    • Multiple hypothesis video segmentation from superpixel flows
    • A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Multiple hypothesis video segmentation from superpixel flows. ECCV, page 14, 2010.
    • (2010) ECCV , pp. 14
    • Vazquez-Reina, A.1    Avidan, S.2    Pfister, H.3    Miller, E.4
  • 20
    • 5044234987 scopus 로고    scopus 로고
    • Generalized principal component analysis
    • R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis. In CVPR, 2003.
    • (2003) CVPR
    • Vidal, R.1    Ma, Y.2    Sastry, S.3
  • 22
    • 34948837349 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate
    • J. Yan and M. Pollefeys. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In ECCV, 2006.
    • (2006) ECCV
    • Yan, J.1    Pollefeys, M.2
  • 23
    • 84856681706 scopus 로고    scopus 로고
    • YouTube May
    • YouTube. The official youtube blog, May 2011. http://youtube-global. blogspot.com/2011/05/thanks-youtube-community-for-two-big.html.
    • (2011) The Official Youtube Blog


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.