메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1472-1479

A generative framework to investigate the underlying patterns in human activities

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY RATE; AUTOMATIC CLUSTERING; DATA SETS; DYNAMIC BAYESIAN NETWORK; GENERATIVE MODEL; HIERARCHICAL BAYESIAN MODELS; HUMAN ACTIVITIES; LATENT DIRICHLET ALLOCATIONS; LEARNING FRAMEWORKS; MOTION PATTERN; PATTERNS OF MOTION; TEMPORAL ORDERING; VISUAL FEATURE;

EID: 84856639328     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2011.6130424     Document Type: Conference Paper
Times cited : (8)

References (17)
  • 2
    • 78149489165 scopus 로고    scopus 로고
    • Action recognition using direction models of motion
    • Y. Benabbas, A. Lablack, N. Ihaddadene, and C. Djeraba. Action Recognition Using Direction Models of Motion. In ICPR, pages 4295-4298, 2010.
    • (2010) ICPR , pp. 4295-4298
    • Benabbas, Y.1    Lablack, A.2    Ihaddadene, N.3    Djeraba, C.4
  • 3
    • 79952507257 scopus 로고    scopus 로고
    • Action recognition: A region based approach
    • H. Bilen, V. P. Namboodiri, and L. Van Gool. Action recognition: A region based approach. In WACV, pages 294-300, 2011.
    • (2011) WACV , pp. 294-300
    • Bilen, H.1    Namboodiri, V.P.2    Van Gool, L.3
  • 6
    • 85085175172 scopus 로고    scopus 로고
    • A markov clustering topic model for mining behaviour in video
    • T. Hospedales, S.-G. Gong, and T. Xiang. A Markov Clustering Topic Model for Mining Behaviour in Video. In ICCV, pages 1165-1172, 2009.
    • (2009) ICCV , pp. 1165-1172
    • Hospedales, T.1    Gong, S.-G.2    Xiang, T.3
  • 7
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • September
    • I. Laptev. On Space-Time Interest Points. Int. J. Comput. Vision, 64:107-123, September 2005.
    • (2005) Int. J. Comput. Vision , vol.64 , pp. 107-123
    • Laptev, I.1
  • 8
    • 51949083365 scopus 로고    scopus 로고
    • Learning realistic human actions from movies
    • I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning Realistic Human Actions From Movies. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Laptev, I.1    Marszalek, M.2    Schmid, C.3    Rozenfeld, B.4
  • 9
    • 34948883502 scopus 로고    scopus 로고
    • Leveraging temporal, contextual and ordering constraints for recognizing complex activities in video
    • June
    • B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, contextual and ordering constraints for recognizing complex activities in video. In CVPR, June 2007.
    • (2007) CVPR
    • Laxton, B.1    Lim, J.2    Kriegman, D.3
  • 10
    • 79958738498 scopus 로고    scopus 로고
    • Representing pairwise spatial and temporal relations for action recognition
    • September
    • P. Matikainen, M. Hebert, and R. Sukthankar. Representing Pairwise Spatial and Temporal Relations for Action Recognition. In ECCV, September 2010.
    • (2010) ECCV
    • Matikainen, P.1    Hebert, M.2    Sukthankar, R.3
  • 11
    • 77953182943 scopus 로고    scopus 로고
    • Activity recognition using the velocity histories of tracked keypoints
    • R. Messing, C. Pal, and H. Kautz. Activity Recognition Using the Velocity Histories of Tracked Keypoints. In ICCV, 2009.
    • (2009) ICCV
    • Messing, R.1    Pal, C.2    Kautz, H.3
  • 12
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. In ECCV, pages 392-405, 2010.
    • (2010) ECCV , pp. 392-405
    • Niebles, J.1    Chen, C.-W.2    Fei-Fei, L.3
  • 13
    • 80052901415 scopus 로고    scopus 로고
    • Modeling the temporal extent of actions
    • September
    • S. Satkin and M. Hebert. Modeling the Temporal Extent of Actions. In ECCV, September 2010.
    • (2010) ECCV
    • Satkin, S.1    Hebert, M.2
  • 15
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models
    • X. Wang, X. Ma, and W. Grimson. Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models. IEEE TPattern Anal. Mach. Intell., 31:539-555, 2009.
    • (2009) IEEE TPattern Anal. Mach. Intell. , vol.31 , pp. 539-555
    • Wang, X.1    Ma, X.2    Grimson, W.3
  • 16
    • 69549129405 scopus 로고    scopus 로고
    • Human action recognition by semilatent topic models
    • Y. Wang and G. Mori. Human Action Recognition by Semilatent Topic Models. IEEE TPattern Anal. Mach. Intell., 31:1762-1774, 2009.
    • (2009) IEEE TPattern Anal. Mach. Intell. , vol.31 , pp. 1762-1774
    • Wang, Y.1    Mori, G.2
  • 17
    • 41749113798 scopus 로고    scopus 로고
    • Video behavior profiling for anomaly detection
    • May
    • T. Xiang and S. Gong. Video Behavior Profiling for Anomaly Detection. IEEE TPattern Anal. Mach. Intell., 30:893-908, May 2008.
    • (2008) IEEE TPattern Anal. Mach. Intell. , vol.30 , pp. 893-908
    • Xiang, T.1    Gong, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.