메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1681-1688

Tensor-based covariance matrices for object tracking

Author keywords

[No Author keywords available]

Indexed keywords

ACROSS TIME; COLUMN VECTOR; COVARIANCE MATRICES; DISTANCE MEASURE; HIGH-DIMENSIONAL; IMAGE DATA; INCREMENTAL MODELS; INTRINSIC STRUCTURES; K L TRANSFORM; MATRIX; OBJECT MODELING; OBJECT REPRESENTATIONS; OBJECT TRACKING; PRINCIPAL COMPONENTS; RANDOM SIGNAL; REDUCED-DIMENSIONAL; RIEMANNIAN METRICS; THIRD-ORDER TENSORS; TRACKING METHOD;

EID: 84856638361     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2011.6130452     Document Type: Conference Paper
Times cited : (5)

References (18)
  • 1
    • 84856638708 scopus 로고    scopus 로고
    • PETS2001 datasets, The University of Reading, UK. Website: peipa. essex. ac. uk/ipa/pix/pets/PETS2001/
    • PETS2001 datasets, The University of Reading, UK. Website: peipa. essex. ac. uk/ipa/pix/pets/PETS2001/.
  • 2
    • 77951972265 scopus 로고    scopus 로고
    • Kernel covariance image region description for object tracking
    • O. Arif and P. Vela. Kernel covariance image region description for object tracking. In IEEE Int. Conf. on Image Processing, pages 865-868, 2009.
    • (2009) IEEE Int. Conf. on Image Processing , pp. 865-868
    • Arif, O.1    Vela, P.2
  • 3
    • 79251594741 scopus 로고    scopus 로고
    • Improved stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix
    • May
    • T. J. Fisher and X. Sun. Improved stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix. Comput. Stat. Data Anal., 55:1909-1918, May 2011.
    • (2011) Comput. Stat. Data Anal. , vol.55 , pp. 1909-1918
    • Fisher, T.J.1    Sun, X.2
  • 6
    • 79851515408 scopus 로고    scopus 로고
    • Incremental tensor subspace learning and its applications to foreground segmentation and tracking
    • February
    • W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int. J. Comput. Vision, 91:303-327, February 2011.
    • (2011) Int. J. Comput. Vision , vol.91 , pp. 303-327
    • Hu, W.1    Li, X.2    Zhang, X.3    Shi, X.4    Maybank, S.5    Zhang, Z.6
  • 7
    • 69949112729 scopus 로고    scopus 로고
    • Kernel-based high-dimensional histogram estimation for visual tracking
    • oct.
    • P. Karasev, J. Malcolm, and A. Tannenbaum. Kernel-based high-dimensional histogram estimation for visual tracking. In IEEE Int. Conf. on Image Processing, pages 2728-2731, oct. 2008.
    • (2008) IEEE Int. Conf. on Image Processing , pp. 2728-2731
    • Karasev, P.1    Malcolm, J.2    Tannenbaum, A.3
  • 8
    • 0034144761 scopus 로고    scopus 로고
    • On the best Rank-1 and Rank-(R1 R2 . . R) approximation of higherorder tensors
    • March
    • L. D. Lathauwer, B. D. Moor, and J. Vandewalle. On the best Rank-1 and Rank-(R1, R2, . ., R) approximation of higherorder tensors. SIAM J. Matrix Anal. Appl., 21:1324-1342, March 2000.
    • (2000) SIAM J. Matrix Anal. Appl. , vol.21 , pp. 1324-1342
    • Lathauwer, L.D.1    Moor, B.D.2    Vandewalle, J.3
  • 11
    • 77956853843 scopus 로고    scopus 로고
    • Covariance tracking via geometric particle filtering
    • 9, February 2010
    • Y. Liu, G. Li, and Z. Shi. Covariance tracking via geometric particle filtering. EURASIP J. Adv. Signal Process, 2010:22:1-22:9, February 2010.
    • (2010) EURASIP J. Adv. Signal Process , vol.22 , pp. 1-22
    • Liu, Y.1    Li, G.2    Shi, Z.3
  • 13
    • 33745818927 scopus 로고    scopus 로고
    • Region covariance: A fast descriptor for detection and classification
    • O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification. In Europ. Conf. on Computer Vision, pages 589-600, 2006.
    • (2006) Europ. Conf. on Computer Vision , pp. 589-600
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 15
    • 38349091931 scopus 로고    scopus 로고
    • A tensor approximation approach to dimensionality reduction
    • March
    • H. Wang and N. Ahuja. A tensor approximation approach to dimensionality reduction. Int. J. Comput. Vision, 76:217-229, March 2008.
    • (2008) Int. J. Comput. Vision , vol.76 , pp. 217-229
    • Wang, H.1    Ahuja, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.