메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1457-1461

An EEG signals classification system using optimized adaptive neuro-fuzzy inference model based on harmony search algorithm

Author keywords

Adaptive neuro fuzzy inference model; EEG signal; Harmony Search algorithm; Hjorth parameters

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE; EEG SIGNAL; EEG SIGNALS; EEG SIGNALS CLASSIFICATION; ELECTROENCEPHALOGRAM SIGNALS; GRADIENT DESCENT METHOD; HARMONY SEARCH ALGORITHMS; HJORTH PARAMETERS; HS ALGORITHM; HUMAN BRAIN; MODEL BASED APPROACH; MODEL TRAINING; MOTOR IMAGERY EEG; MOTOR IMAGERY TASKS;

EID: 84856528339     PISSN: 15987833     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (11)
  • 1
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Ínan Güler, E. D. U{combining double acute accent}beyli, "Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients," Journal of Neuroscience Methods, Vol. 148, No. 2, pp. 113-121, 2005.
    • (2005) Journal of Neuroscience Methods , vol.148 , Issue.2 , pp. 113-121
    • Güler, Í.1    Ubeyli, E.D.2
  • 2
    • 78649967728 scopus 로고    scopus 로고
    • A hierarchical positive and negative emotion understanding system based on integrated analysis of visual and brain signals
    • Q. Zhang, M. H. Lee, "A hierarchical positive and negative emotion understanding system based on integrated analysis of visual and brain signals,"Neurocomputing, Vol. 73, pp.3264-3272, 2010
    • (2010) Neurocomputing , vol.73 , pp. 3264-3272
    • Zhang, Q.1    Lee, M.H.2
  • 3
    • 0036905441 scopus 로고    scopus 로고
    • Neuro-fuzzy and genetic algorithm in multiple response optimization
    • C. -B. Cheng, C. -J. Cheng, E. S. Lee, "Neuro-fuzzy and genetic algorithm in multiple response optimization," Computers &Mathematics with Applications, Vol. 44, Issue 12, pp. 1503-1514, 2002
    • (2002) Computers &Mathematics with Applications , vol.44 , Issue.12 , pp. 1503-1514
    • Cheng, C.-B.1    Cheng, C.-J.2    Lee, E.S.3
  • 5
    • 77953131859 scopus 로고    scopus 로고
    • EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features
    • W. -Y. Hsu, "EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features," Journal of Neuroscience Methods, Vol. 189, Issue 2, pp. 295-302, 2010
    • (2010) Journal of Neuroscience Methods , vol.189 , Issue.2 , pp. 295-302
    • Hsu, W.-Y.1
  • 6
    • 0027601884 scopus 로고
    • Adaptive-network-based fuzzy inference system
    • J. Roger, "Adaptive-network-based fuzzy inference system," IEEE Trans. SMC, Vol. 23, No. 3, pp. 665-685, 1993
    • (1993) IEEE Trans. SMC , vol.23 , Issue.3 , pp. 665-685
    • Roger, J.1
  • 8
    • 78649988837 scopus 로고    scopus 로고
    • Parameter-setting-free harmony search algorithm
    • Z. W. Geem, K. B. Sim, "Parameter-setting-free harmony search algorithm," Applied Mathematics and Computation, Vol. 217, Issue 8, Dec, 2010, pp.3881-3889
    • (2010) Applied Mathematics and Computation , vol.217 , Issue.8 , pp. 3881-3889
    • Geem, Z.W.1    Sim, K.B.2
  • 9
    • 34249029672 scopus 로고    scopus 로고
    • The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects
    • DOI 10.1016/j.neuroimage.2007.01.051, PII S1053811907000535
    • B. Blankertz, G. Dornhege, M. Krauledat, K. -R. MÛller, and G. Curio, "The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects,"NeuroImage, Vol. 37, No. 2, pp. 539-550, 2007 (Pubitemid 47444247)
    • (2007) NeuroImage , vol.37 , Issue.2 , pp. 539-550
    • Blankertz, B.1    Dornhege, G.2    Krauledat, M.3    Muller, K.-R.4    Curio, G.5
  • 10
    • 0034868606 scopus 로고    scopus 로고
    • Hidden Markov models for online classification of single trial EEG data
    • DOI 10.1016/S0167-8655(01)00075-7, PII S0167865501000757, Selected Papers from The 11th Portuguese Conference on Pattern Recognitition - RECPAD2000
    • B. Obermaier, C. Guger, C. Neuper, G. Pfurtscheler, "Hidden Markov Models for online classification of single trial EEG data,"Pattern Recognition Letters, Vol. 22, Issue 12, pp. 1299-1309, 2001 (Pubitemid 32784363)
    • (2001) Pattern Recognition Letters , vol.22 , Issue.12 , pp. 1299-1309
    • Obermaier, B.1    Guger, C.2    Neuper, C.3    Pfurtscheller, G.4
  • 11
    • 34249029672 scopus 로고    scopus 로고
    • The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects
    • Blankertz, B., Dornheg, G., Krauledat, M., Müller, and Curio. G., 2007, The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects, Neuroimage, Vol. 37, No. 2, pp. 539-550
    • (2007) Neuroimage , vol.37 , Issue.2 , pp. 539-550
    • Blankertz, B.1    Dornheg, G.2    Krauledat, M.3    Müller4    Curio, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.