메뉴 건너뛰기




Volumn 24, Issue 2, 2012, Pages 408-454

Quantifying statistical interdependence, Part III: N > 2 point processes

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGICAL MODEL; ELECTROENCEPHALOGRAPHY; HUMAN; LETTER; MILD COGNITIVE IMPAIRMENT; NERVE CELL; PATHOPHYSIOLOGY; PHYSIOLOGY; STATISTICAL MODEL; STATISTICS; TIME;

EID: 84856390183     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00235     Document Type: Letter
Times cited : (5)

References (30)
  • 1
    • 0027430030 scopus 로고
    • Spatiotemporal firing patterns in the frontal cortex of behaving monkeys
    • Abeles, M., Bergman, H., Margalit, E., & Vaadia, E. (1993). Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol., 70(4), 1629-1638.
    • (1993) J. Neurophysiol. , vol.70 , Issue.4 , pp. 1629-1638
    • Abeles, M.1    Bergman, H.2    Margalit, E.3    Vaadia, E.4
  • 2
    • 0037264519 scopus 로고    scopus 로고
    • Synchronous firing and higherorder interactions in neuron pool
    • Amari, S., Nakahara, H., Wu, S., & Sakai, Y. (2003). Synchronous firing and higherorder interactions in neuron pool. Neural Computation, 15, 127-142.
    • (2003) Neural Computation , vol.15 , pp. 127-142
    • Amari, S.1    Nakahara, H.2    Wu, S.3    Sakai, Y.4
  • 3
  • 5
    • 70349976267 scopus 로고    scopus 로고
    • A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG
    • Dauwels, J., Vialatte, F., & Cichocki, A. (2010a). A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG. Neuroimage, 49, 668-693.
    • (2010) Neuroimage , vol.49 , pp. 668-693
    • Dauwels, J.1    Vialatte, F.2    Cichocki, A.3
  • 6
    • 78549283783 scopus 로고    scopus 로고
    • Diagnosis of Alzheimer's disease from EEG signals: Where are we standing?
    • Epub May 11 2010
    • Dauwels, J., Vialatte, F., & Cichocki, A. (2010b). Diagnosis of Alzheimer's disease from EEG signals: Where are we standing? Curr. Alzheimer Research, Epub May 11 2010.
    • (2010) Curr. Alzheimer Research
    • Dauwels, J.1    Vialatte, F.2    Cichocki, A.3
  • 7
    • 85162037365 scopus 로고    scopus 로고
    • Measuring neural synchrony bymessage passing
    • J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Cambridge, MA: MIT Press
    • Dauwels, J., Vialatte, F., Rutkowski, T., & Cichocki, A. (2008). Measuring neural synchrony bymessage passing. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20 (pp. 361-368). Cambridge, MA: MIT Press.
    • (2008) Advances in neural information processing systems , vol.20 , pp. 361-368
    • Dauwels, J.1    Vialatte, F.2    Rutkowski, T.3    Cichocki, A.4
  • 8
    • 70249083815 scopus 로고    scopus 로고
    • Quantifying statistical interdependence by message passing on graphs: I. One-dimensional point processes
    • Dauwels, J., Vialatte, F., Weber, T., & Cichocki, A. (2009a). Quantifying statistical interdependence by message passing on graphs: I. One-dimensional point processes. Neural Computation, 21(8), 2152-2202.
    • (2009) Neural Computation , vol.21 , Issue.8 , pp. 2152-2202
    • Dauwels, J.1    Vialatte, F.2    Weber, T.3    Cichocki, A.4
  • 9
    • 70249140633 scopus 로고    scopus 로고
    • Quantifying statistical interdependence by message passing on graphs: II. Multi-dimensional point processes
    • Dauwels, J., Vialatte, F., Weber, T., & Cichocki, A. (2009b). Quantifying statistical interdependence by message passing on graphs: II. Multi-dimensional point processes. Neural Computation, 21(8), 2203-2268.
    • (2009) Neural Computation , vol.21 , Issue.8 , pp. 2203-2268
    • Dauwels, J.1    Vialatte, F.2    Weber, T.3    Cichocki, A.4
  • 11
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey, B., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972-976.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.1    Dueck, D.2
  • 12
    • 67651015658 scopus 로고    scopus 로고
    • A binary variable model for affinity propagation
    • Givoni, I., & Frey, B. J. (2009). A binary variable model for affinity propagation. Neural Computation, 21, 1589-1600.
    • (2009) Neural Computation , vol.21 , pp. 1589-1600
    • Givoni, I.1    Frey, B.J.2
  • 13
    • 0032111678 scopus 로고    scopus 로고
    • Dynamics of membrane excitability determine interspike interval variability:Alink between spike generation mechanisms and cortical spike train statistics
    • Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability:Alink between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047-1065.
    • (1998) Neural Computation , vol.10 , pp. 1047-1065
    • Gutkin, B.S.1    Ermentrout, G.B.2
  • 14
    • 2942616619 scopus 로고    scopus 로고
    • EEG dynamics in patients with Alzheimer's disease
    • Jeong, J. (2004). EEG dynamics in patients with Alzheimer's disease. Clinical Neurophysiology, 115, 1490-1505.
    • (2004) Clinical Neurophysiology , vol.115 , pp. 1490-1505
    • Jeong, J.1
  • 15
    • 85161965460 scopus 로고    scopus 로고
    • Convex clustering with exemplar-based models
    • J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Cambridge, MA: MIT Press
    • Lashkari, D., & Golland, P. (2008). Convex clustering with exemplar-based models. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20 (pp. 361-368). Cambridge, MA: MIT Press.
    • (2008) Advances in neural information processing systems , vol.20 , pp. 361-368
    • Lashkari, D.1    Golland, P.2
  • 16
    • 0034983181 scopus 로고    scopus 로고
    • Cerebral blood flow and metabolic abnormalities inAlzheimer's disease
    • Matsuda, H. (2001). Cerebral blood flow and metabolic abnormalities inAlzheimer's disease. Ann. Nucl. Med., 15, 85-92.
    • (2001) Ann. Nucl. Med. , vol.15 , pp. 85-92
    • Matsuda, H.1
  • 17
    • 0019405994 scopus 로고
    • Voltage oscillations in the barnacle giant muscle fiber
    • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35, 193-213.
    • (1981) Biophys. J. , vol.35 , pp. 193-213
    • Morris, C.1    Lecar, H.2
  • 19
    • 27844612542 scopus 로고    scopus 로고
    • Nonlinearmultivariate analysis of neurophysiological signals
    • Pereda, E., Quiroga, R. Q., & Bhattacharya, J. (2005). Nonlinearmultivariate analysis of neurophysiological signals. Progress in Neurobiology, 77, 1-37.
    • (2005) Progress in Neurobiology , vol.77 , pp. 1-37
    • Pereda, E.1    Quiroga, R.Q.2    Bhattacharya, J.3
  • 20
    • 85035246836 scopus 로고    scopus 로고
    • Performance of different synchronization measures in real data: A case study on EEG signals
    • Quiroga, R. Q., Kraskov, A., Kreuz, T., & Grassberger, P. (2002). Performance of different synchronization measures in real data: A case study on EEG signals. Physical Review E, 65.
    • (2002) Physical Review E , pp. 65
    • Quiroga, R.Q.1    Kraskov, A.2    Kreuz, T.3    Grassberger, P.4
  • 21
    • 4644225782 scopus 로고    scopus 로고
    • The biophysical basis of firing variability in cortical neurons
    • J. Feng (Ed.), London: Chapman & Hall/CRC
    • Robinson, H.P.C. (2003). The biophysical basis of firing variability in cortical neurons. In J. Feng (Ed.), Computational neuroscience: A comprehensive approach. London: Chapman & Hall/CRC.
    • (2003) Computational neuroscience: A comprehensive approach
    • Robinson, H.P.C.1
  • 23
    • 24644505364 scopus 로고    scopus 로고
    • Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field
    • Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology, 116, 2266-2301.
    • (2005) Clinical Neurophysiology , vol.116 , pp. 2266-2301
    • Stam, C.J.1
  • 24
    • 4644237013 scopus 로고    scopus 로고
    • Random dynamics of the Morris-Lecar neural model
    • Tateno, T., & Pakdaman, K. (2004). Random dynamics of the Morris-Lecar neural model. Chaos, 14(3).
    • (2004) Chaos , vol.14 , Issue.3
    • Tateno, T.1    Pakdaman, K.2
  • 28
    • 33847183168 scopus 로고    scopus 로고
    • A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics
    • Vialatte, F., Martin, C., Dubois, R., Haddad, J., Quenet, B., Gervais, R., et al. (2007). A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics. Neural Networks, 20, 194-209.
    • (2007) Neural Networks , vol.20 , pp. 194-209
    • Vialatte, F.1    Martin, C.2    Dubois, R.3    Haddad, J.4    Quenet, B.5    Gervais, R.6
  • 29
    • 0001175897 scopus 로고    scopus 로고
    • Metric-space analysis of spike trains: Theory, algorithms, and application
    • Victor, J. D., & Purpura, K. P. (1997). Metric-space analysis of spike trains: Theory, algorithms, and application. Network: Comput. Neural Systems, 8(17), 127-164.
    • (1997) Network: Comput. Neural Systems , vol.8 , Issue.17 , pp. 127-164
    • Victor, J.D.1    Purpura, K.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.