메뉴 건너뛰기




Volumn 14, Issue 4, 2011, Pages 538-553

On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in ℝ n

Author keywords

Cauchy formula; Existence and uniqueness of a solution; Fractional Cauchy problem; Riemann Liouville derivative

Indexed keywords


EID: 84856329080     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-011-0033-5     Document Type: Article
Times cited : (52)

References (19)
  • 1
    • 73249139676 scopus 로고    scopus 로고
    • On the concept of solution for fractional differential equations with uncertainty
    • R.P. Agarwal. V. Lakshmikantham, J.J. Nieto, On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis 72 (2010), 2859-2862.
    • (2010) Nonlinear Analysis , vol.72 , pp. 2859-2862
    • Agarwal, R.P.1    Lakshmikantham, V.2    Nieto, J.J.3
  • 2
    • 84941480860 scopus 로고
    • Some existence theorems on differential equations of generalized order
    • M.A. Al-Bassam, Some existence theorems on differential equations of generalized order. J. Reine Angew. Math. 218, No 1 (1965), 70-78.
    • (1965) J. Reine Angew. Math. , vol.218 , Issue.1 , pp. 70-78
    • Al-Bassam, M.A.D.1
  • 3
    • 0039459055 scopus 로고
    • Differential equations of non-integer order
    • J.H. Barrett, Differential equations of non-integer order. Canad. J. Math. 6, No 4 (1954), 529-541.
    • (1954) Canad. J. Math. , vol.6 , Issue.4 , pp. 529-541
    • Barrett, J.H.1
  • 4
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solution for a nonlinear fractional differential equation
    • Article ID 324561
    • M. Belmekki, J.J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation. Boundary Value Problems, vol. 2009, Article ID 324561.
    • Boundary Value Problems , vol.2009
    • Belmekki, M.1    Nieto, J.J.2    Rodriguez-Lopez, R.3
  • 5
    • 33749059282 scopus 로고
    • Une remarque sur l'application de la methode de Banach- Cocciopoli-Tichonov dans la theorie de l'equation s = f(x y z p q)
    • A. Bielecki, Une remarque sur l'application de la methode de Banach- Cocciopoli-Tichonov dans la theorie de l'equation s = f(x, y, z, p, q). Bull. Acad. Pol. Sci. 4 (1956), 265-268.
    • (1956) Bull. Acad. Pol. Sci. , vol.4 , pp. 265-268
    • Bielecki, A.1
  • 6
    • 34247323827 scopus 로고    scopus 로고
    • Fractional differential equations as alternative models to nonlinear differential equations
    • DOI 10.1016/j.amc.2006.08.105, PII S0096300306011398
    • B. Bonilla, M. Rivero, L. Rodriguez-Germa, J.J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations. Applied Mathematics and Computation 187 (2007), 79-88. (Pubitemid 46635706)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.1 SPEC. ISS. , pp. 79-88
    • Bonilla, B.1    Rivero, M.2    Rodriguez-Germa, L.3    Trujillo, J.J.4
  • 7
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a nonlinear fractional differential equation
    • DOI 10.1006/jmaa.1996.0456
    • D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equations. J. Math. Anal. Appl. 204, No 2 (1996), 609-625. (Pubitemid 126163548)
    • (1996) Journal of Mathematical Analysis and Applications , vol.204 , Issue.2 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 8
    • 0037466696 scopus 로고    scopus 로고
    • Modification of the application of a contraction mapping method on a class of fractional differential equation
    • DOI 10.1016/S0096-3003(02)00136-4, PII S0096300302001364
    • Z.F.A. El-Raheem, Modification of the application of a contraction mapping method on a class of fractional differential equation. Applied Mathematics and Computation 137 (2003), 371-374. (Pubitemid 35384546)
    • (2003) Applied Mathematics and Computation , vol.137 , Issue.2-3 , pp. 371-374
    • El-Raheem, Z.F.A.1
  • 9
    • 33244471191 scopus 로고    scopus 로고
    • An extension of Picard-Lindeloff theorem to fractional differential equations
    • N. Hayek, J. Trujillo, M. Rivero, B. Bonilla, J.C. Moreno, An extension of Picard-Lindeloff theorem to fractional differential equations. Appl. Anal. 70, No 3-4 (1999), 347-361.
    • (1999) Appl. Anal. , vol.70 , Issue.3-4 , pp. 347-361
    • Hayek, N.1    Trujillo, J.2    Rivero, M.3    Bonilla, B.4    Moreno, J.C.5
  • 10
    • 33745869026 scopus 로고    scopus 로고
    • Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
    • DOI 10.1007/s00397-005-0043-5
    • N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45 (2006), 765-771. (Pubitemid 44027219)
    • (2006) Rheologica Acta , vol.45 , Issue.5 , pp. 765-771
    • Heymans, N.1    Podlubny, I.2
  • 11
    • 70449526839 scopus 로고    scopus 로고
    • An approach via fractional analusis to non-linearity induced by coarse-graining in space
    • G. Jumarie, An approach via fractional analusis to non-linearity induced by coarse-graining in space. Nonlinear Analysis: Real World Applications 11 (2010), 535-546.
    • (2010) Nonlinear Analysis: Real World Applications , vol.11 , pp. 535-546
    • Jumarie, G.1
  • 13
    • 59849083895 scopus 로고    scopus 로고
    • Integral equations and initial value problems for nonlinear differential equations of fractional order
    • N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order. Nonlinear Analysis 70 (2009), 2521-2529.
    • (2009) Nonlinear Analysis , vol.70 , pp. 2521-2529
    • Kosmatov, N.1
  • 15
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J.J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Lett. 23, No 10 (2010), 1248-1251.
    • (2010) Appl. Math. Lett. , vol.23 , Issue.10 , pp. 1248-1251
    • Nieto, J.J.1
  • 16
    • 84966257408 scopus 로고
    • Existence theorems for solutions of differential equations of non-integral order
    • E. Pitcher, W.E. Sewell, Existence theorems for solutions of differential equations of non-integral order.Bull. Amer. Math. Soc. 44, No 2 (1938), 100-107.
    • (1938) Bull. Amer. Math. Soc. , vol.44 , Issue.2 , pp. 100-107
    • Pitcher, E.1    Sewell, W.E.2
  • 18
    • 67349088414 scopus 로고    scopus 로고
    • Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives
    • Z. Shuqin, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Analysis 71 (2009), 2087-2093.
    • (2009) Nonlinear Analysis , vol.71 , pp. 2087-2093
    • Shuqin, Z.1
  • 19
    • 77049084247 scopus 로고    scopus 로고
    • Initial value problems for fractional differential equations involving Riemann-Lioville sequential fractional derivative
    • Z. Wei, O. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Lioville sequential fractional derivative. J. Math. Anal. Appl. 367 (2010), 260-272.
    • (2010) J. Math. Anal. Appl. , vol.367 , pp. 260-272
    • Wei, Z.1    Li, O.2    Che, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.