-
1
-
-
73249139676
-
On the concept of solution for fractional differential equations with uncertainty
-
R.P. Agarwal. V. Lakshmikantham, J.J. Nieto, On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis 72 (2010), 2859-2862.
-
(2010)
Nonlinear Analysis
, vol.72
, pp. 2859-2862
-
-
Agarwal, R.P.1
Lakshmikantham, V.2
Nieto, J.J.3
-
2
-
-
84941480860
-
Some existence theorems on differential equations of generalized order
-
M.A. Al-Bassam, Some existence theorems on differential equations of generalized order. J. Reine Angew. Math. 218, No 1 (1965), 70-78.
-
(1965)
J. Reine Angew. Math.
, vol.218
, Issue.1
, pp. 70-78
-
-
Al-Bassam, M.A.D.1
-
3
-
-
0039459055
-
Differential equations of non-integer order
-
J.H. Barrett, Differential equations of non-integer order. Canad. J. Math. 6, No 4 (1954), 529-541.
-
(1954)
Canad. J. Math.
, vol.6
, Issue.4
, pp. 529-541
-
-
Barrett, J.H.1
-
4
-
-
70249121999
-
Existence of periodic solution for a nonlinear fractional differential equation
-
Article ID 324561
-
M. Belmekki, J.J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation. Boundary Value Problems, vol. 2009, Article ID 324561.
-
Boundary Value Problems
, vol.2009
-
-
Belmekki, M.1
Nieto, J.J.2
Rodriguez-Lopez, R.3
-
5
-
-
33749059282
-
Une remarque sur l'application de la methode de Banach- Cocciopoli-Tichonov dans la theorie de l'equation s = f(x y z p q)
-
A. Bielecki, Une remarque sur l'application de la methode de Banach- Cocciopoli-Tichonov dans la theorie de l'equation s = f(x, y, z, p, q). Bull. Acad. Pol. Sci. 4 (1956), 265-268.
-
(1956)
Bull. Acad. Pol. Sci.
, vol.4
, pp. 265-268
-
-
Bielecki, A.1
-
6
-
-
34247323827
-
Fractional differential equations as alternative models to nonlinear differential equations
-
DOI 10.1016/j.amc.2006.08.105, PII S0096300306011398
-
B. Bonilla, M. Rivero, L. Rodriguez-Germa, J.J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations. Applied Mathematics and Computation 187 (2007), 79-88. (Pubitemid 46635706)
-
(2007)
Applied Mathematics and Computation
, vol.187
, Issue.1 SPEC. ISS.
, pp. 79-88
-
-
Bonilla, B.1
Rivero, M.2
Rodriguez-Germa, L.3
Trujillo, J.J.4
-
7
-
-
0030528474
-
Existence and uniqueness for a nonlinear fractional differential equation
-
DOI 10.1006/jmaa.1996.0456
-
D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equations. J. Math. Anal. Appl. 204, No 2 (1996), 609-625. (Pubitemid 126163548)
-
(1996)
Journal of Mathematical Analysis and Applications
, vol.204
, Issue.2
, pp. 609-625
-
-
Delbosco, D.1
Rodino, L.2
-
8
-
-
0037466696
-
Modification of the application of a contraction mapping method on a class of fractional differential equation
-
DOI 10.1016/S0096-3003(02)00136-4, PII S0096300302001364
-
Z.F.A. El-Raheem, Modification of the application of a contraction mapping method on a class of fractional differential equation. Applied Mathematics and Computation 137 (2003), 371-374. (Pubitemid 35384546)
-
(2003)
Applied Mathematics and Computation
, vol.137
, Issue.2-3
, pp. 371-374
-
-
El-Raheem, Z.F.A.1
-
9
-
-
33244471191
-
An extension of Picard-Lindeloff theorem to fractional differential equations
-
N. Hayek, J. Trujillo, M. Rivero, B. Bonilla, J.C. Moreno, An extension of Picard-Lindeloff theorem to fractional differential equations. Appl. Anal. 70, No 3-4 (1999), 347-361.
-
(1999)
Appl. Anal.
, vol.70
, Issue.3-4
, pp. 347-361
-
-
Hayek, N.1
Trujillo, J.2
Rivero, M.3
Bonilla, B.4
Moreno, J.C.5
-
10
-
-
33745869026
-
Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
-
DOI 10.1007/s00397-005-0043-5
-
N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45 (2006), 765-771. (Pubitemid 44027219)
-
(2006)
Rheologica Acta
, vol.45
, Issue.5
, pp. 765-771
-
-
Heymans, N.1
Podlubny, I.2
-
11
-
-
70449526839
-
An approach via fractional analusis to non-linearity induced by coarse-graining in space
-
G. Jumarie, An approach via fractional analusis to non-linearity induced by coarse-graining in space. Nonlinear Analysis: Real World Applications 11 (2010), 535-546.
-
(2010)
Nonlinear Analysis: Real World Applications
, vol.11
, pp. 535-546
-
-
Jumarie, G.1
-
13
-
-
59849083895
-
Integral equations and initial value problems for nonlinear differential equations of fractional order
-
N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order. Nonlinear Analysis 70 (2009), 2521-2529.
-
(2009)
Nonlinear Analysis
, vol.70
, pp. 2521-2529
-
-
Kosmatov, N.1
-
14
-
-
74149086307
-
Fractional models, non-locality, and complex systems
-
Y.F. Luchko, M. Rivero, J.J. Trujillo, M.P. Velasco, Fractional models, non-locality, and complex systems. Computers and Mathematics with Applications 59 (2010), 1048-1056.
-
(2010)
Computers and Mathematics with Applications
, vol.59
, pp. 1048-1056
-
-
Luchko, Y.F.1
Rivero, M.2
Trujillo, J.J.3
Velasco, M.P.4
-
15
-
-
77955429536
-
Maximum principles for fractional differential equations derived from Mittag-Leffler functions
-
J.J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Lett. 23, No 10 (2010), 1248-1251.
-
(2010)
Appl. Math. Lett.
, vol.23
, Issue.10
, pp. 1248-1251
-
-
Nieto, J.J.1
-
16
-
-
84966257408
-
Existence theorems for solutions of differential equations of non-integral order
-
E. Pitcher, W.E. Sewell, Existence theorems for solutions of differential equations of non-integral order.Bull. Amer. Math. Soc. 44, No 2 (1938), 100-107.
-
(1938)
Bull. Amer. Math. Soc.
, vol.44
, Issue.2
, pp. 100-107
-
-
Pitcher, E.1
Sewell, W.E.2
-
18
-
-
67349088414
-
Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives
-
Z. Shuqin, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Analysis 71 (2009), 2087-2093.
-
(2009)
Nonlinear Analysis
, vol.71
, pp. 2087-2093
-
-
Shuqin, Z.1
-
19
-
-
77049084247
-
Initial value problems for fractional differential equations involving Riemann-Lioville sequential fractional derivative
-
Z. Wei, O. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Lioville sequential fractional derivative. J. Math. Anal. Appl. 367 (2010), 260-272.
-
(2010)
J. Math. Anal. Appl.
, vol.367
, pp. 260-272
-
-
Wei, Z.1
Li, O.2
Che, J.3
|