|
Volumn , Issue , 2011, Pages 713-716
|
A probabilistic framework for automatic prostate segmentation with a statistical model of shape and appearance
|
Author keywords
Active Appearance Model; Bayes Classification; Expectation Maximization; Prostate Segmentation
|
Indexed keywords
ACTIVE APPEARANCE MODELS;
AUTOMATIC SEGMENTATIONS;
BAYES CLASSIFICATION;
COMPUTATIONALLY EFFICIENT;
DATA SETS;
EXPECTATION MAXIMIZATION;
IMAGING ARTIFACTS;
INTENSITY DISTRIBUTION;
INTENSITY HETEROGENEITY;
MEAN ABSOLUTE DISTANCE;
MICROCALCIFICATIONS;
PARAMETRIC MODELS;
POSTERIOR PROBABILITY;
PROBABILISTIC FRAMEWORK;
PROSTATE CANCERS;
PROSTATE DISEASE;
PROSTATE SEGMENTATION;
PROSTATE VOLUME;
SIMILARITY COEFFICIENTS;
SPECKLE NOISE;
STATISTICAL MODELS;
TRANSRECTAL ULTRASOUND IMAGES;
TRUS IMAGES;
BIOMINERALIZATION;
DIAGNOSIS;
DISEASES;
FACE RECOGNITION;
PRINCIPAL COMPONENT ANALYSIS;
IMAGE SEGMENTATION;
|
EID: 84856306185
PISSN: 15224880
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/ICIP.2011.6116653 Document Type: Conference Paper |
Times cited : (10)
|
References (9)
|