메뉴 건너뛰기




Volumn 36, Issue 1, 2012, Pages 108-118

Mining bridging rules between conceptual clusters

Author keywords

Association rule; Bridging rule; Clustering; Entropy; Weighting

Indexed keywords

BRIDGING RULE; CLUSTERING; CONCEPTUAL CLUSTERS; INTERESTINGNESS; ITEM SETS; WEIGHTING;

EID: 84856287471     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-010-0247-y     Document Type: Article
Times cited : (5)

References (37)
  • 2
    • 84964943935 scopus 로고    scopus 로고
    • Autonomous discovery of reliable exception rules
    • Suzuki E (1997) Autonomous discovery of reliable exception rules. In: Proceedings of KDD97, pp 259-262
    • (1997) Proceedings of KDD97 , pp. 259-262
    • Suzuki, E.1
  • 3
    • 84920878139 scopus 로고    scopus 로고
    • Exceptional knowledge discovery in databases based on information theory
    • Suzuki E, Shimura M (1996) Exceptional knowledge discovery in databases based on information theory. In: Proceedings of KDD96, pp 275-278
    • (1996) Proceedings of KDD96 , pp. 275-278
    • Suzuki, E.1    Shimura, M.2
  • 4
    • 84942772223 scopus 로고    scopus 로고
    • Exception rule mining with a relative interestiness measure
    • Hussain F, Liu H, Suzuki E, Lu H (2000) Exception rule mining with a relative interestiness measure. In: Proceedings of PAKDD00, pp 86-97
    • (2000) Proceedings of PAKDD00 , pp. 86-97
    • Hussain, F.1    Liu, H.2    Suzuki, E.3    Lu, H.4
  • 5
    • 84898200096 scopus 로고    scopus 로고
    • Mining exception instances to facilitate workflow exception handling
    • Hwang S, Ho S, Tang J (1999) Mining exception instances to facilitate workflow exception handling. In: Proceedings of DASFAA99, pp 45-52
    • (1999) Proceedings of DASFAA99 , pp. 45-52
    • Hwang, S.1    Ho, S.2    Tang, J.3
  • 7
    • 85166320097 scopus 로고    scopus 로고
    • A belief-driven method for discovering unexpected patterns
    • Padmanabhan B, Tuzhilin A (1998) A belief-driven method for discovering unexpected patterns. In: Proceedings of ACM SIGKDD98, pp 94-100
    • (1998) Proceedings of ACM SIGKDD98 , pp. 94-100
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 8
    • 0034593047 scopus 로고    scopus 로고
    • Small is beautiful: Discovering the minimal set of unexpected patterns
    • Padmanabhan B, Tuzhilin A (2000) Small is beautiful: discovering the minimal set of unexpected patterns. In: Proceedings of ACM SIGKDD00, pp 54-63
    • (2000) Proceedings of ACM SIGKDD00 , pp. 54-63
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 9
    • 0041865976 scopus 로고    scopus 로고
    • Springer Berlin, Heidelberg, New York 1007.68972 ISBN: 3-540-00317-7
    • Perner P (2002) Data mining on multimedia data, vol 2558. Springer, Berlin, Heidelberg, New York. ISBN: 3-540-00317-7
    • (2002) Data Mining on Multimedia Data , vol.2558
    • Perner, P.1
  • 10
    • 3042700702 scopus 로고    scopus 로고
    • Mining both positive and negative association rules
    • Sydney, Australia
    • Wu X, Zhang C, Zhang S (2002) Mining both positive and negative association rules. In: ICML02, Sydney, Australia, pp 658-665
    • (2002) ICML02 , pp. 658-665
    • Wu, X.1    Zhang, C.2    Zhang, S.3
  • 14
    • 84977797978 scopus 로고    scopus 로고
    • Fast computation of 2-dimensional depth contours
    • Johnson T, Kwok I, Ng RT (1998) Fast computation of 2-dimensional depth contours. In: Proc KDD-98, pp 224-228
    • (1998) Proc KDD-98 , pp. 224-228
    • Johnson, T.1    Kwok, I.2    Ng, R.T.3
  • 17
    • 84947593543 scopus 로고    scopus 로고
    • Mining changes for real-life applications
    • Liu B, Hsu W, Han H, Xia Y (2000) Mining changes for real-life applications. In: DaWaK00, pp 337-346
    • (2000) DaWaK00 , pp. 337-346
    • Liu, B.1    Hsu, W.2    Han, H.3    Xia, Y.4
  • 19
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • Karypis G, Han E, Kumar V (1999) CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. In: IEEE computer, pp 68-75
    • (1999) IEEE Computer , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 22
    • 23044527560 scopus 로고    scopus 로고
    • Detecting Group Differences: Mining Contrast Sets
    • DOI 10.1023/A:1011429418057
    • SD Bay MJ Pazzani 2001 Detecting group differences: mining contrast sets Data Min Knowl Discov 5 3 213 246 0982.68048 10.1023/A:1011429418057 (Pubitemid 33309267)
    • (2001) Data Mining and Knowledge Discovery , vol.5 , Issue.3 , pp. 213-246
    • Bay, S.D.1    Pazzani, M.J.2
  • 24
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large database sets
    • Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large database sets. In: Proceedings of ACM SIGMOD-00, pp 427-438
    • (2000) Proceedings of ACM SIGMOD-00 , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 25
    • 0036665802 scopus 로고    scopus 로고
    • Anytime mining for multiuser applications
    • 10.1109/TSMCA.2002.804793
    • S Zhang C Zhang 2002 Anytime mining for multiuser applications IEEE Trans Syst, Man Cybern (Part A) 32 4 515 521 10.1109/TSMCA.2002.804793
    • (2002) IEEE Trans Syst, Man Cybern (Part A) , vol.32 , Issue.4 , pp. 515-521
    • Zhang, S.1    Zhang, C.2
  • 27
    • 77953916914 scopus 로고    scopus 로고
    • Interpreting PET scans by structured patient data: A data mining case study in dementia research
    • 10.1007/s10115-009-0234-y
    • J Schmidt A Hapfelmeier M Mueller R Perneczky A Kurz A Drzezga S Kramer 2010 Interpreting PET scans by structured patient data: a data mining case study in dementia research Knowl Inf Syst 24 1 149 170 10.1007/s10115-009-0234-y
    • (2010) Knowl Inf Syst , vol.24 , Issue.1 , pp. 149-170
    • Schmidt, J.1    Hapfelmeier, A.2    Mueller, M.3    Perneczky, R.4    Kurz, A.5    Drzezga, A.6    Kramer, S.7
  • 28
    • 77952012022 scopus 로고    scopus 로고
    • STNR: A suffix tree based noise resilient algorithm for periodicity detection in time series databases
    • 10.1007/s10489-008-0144-9
    • F Rasheed R Alhajj 2010 STNR: A suffix tree based noise resilient algorithm for periodicity detection in time series databases Appl Intell 32 3 364 377 10.1007/s10489-008-0144-9
    • (2010) Appl Intell , vol.32 , Issue.3 , pp. 364-377
    • Rasheed, F.1    Alhajj, R.2
  • 29
    • 75849150575 scopus 로고    scopus 로고
    • Detecting interest cache poisoning in sensor networks using an artificial immune algorithm
    • 10.1007/s10489-008-0132-0
    • C Wallenta J Kim P Bentley S Hailes 2010 Detecting interest cache poisoning in sensor networks using an artificial immune algorithm Appl Intell 32 1 1 26 10.1007/s10489-008-0132-0
    • (2010) Appl Intell , vol.32 , Issue.1 , pp. 1-26
    • Wallenta, C.1    Kim, J.2    Bentley, P.3    Hailes, S.4
  • 30
    • 77953535155 scopus 로고    scopus 로고
    • StatApriori: An efficient algorithm for searching statistically significant association rules
    • 2671107 10.1007/s10115-009-0229-8
    • W Hamalainen 2010 StatApriori: an efficient algorithm for searching statistically significant association rules Knowl Inf Syst 23 3 373 399 2671107 10.1007/s10115-009-0229-8
    • (2010) Knowl Inf Syst , vol.23 , Issue.3 , pp. 373-399
    • Hamalainen, W.1
  • 31
    • 70349902233 scopus 로고    scopus 로고
    • Approximating the number of frequent sets in dense data
    • 10.1007/s10115-009-0212-4
    • Mario Boley Henrik Grosskreutz 2009 Approximating the number of frequent sets in dense data Knowl Inf Syst 21 1 65 89 10.1007/s10115-009-0212-4
    • (2009) Knowl Inf Syst , vol.21 , Issue.1 , pp. 65-89
    • Mario, B.1    Henrik, G.2
  • 32
    • 70350557390 scopus 로고    scopus 로고
    • Mining frequent arrangements of temporal intervals
    • 10.1007/s10115-009-0196-0
    • P Papapetrou G Kollios S Sclaroff D Gunopulos 2009 Mining frequent arrangements of temporal intervals Know Inf Syst 22 2 133 171 10.1007/s10115-009-0196-0
    • (2009) Know Inf Syst , vol.22 , Issue.2 , pp. 133-171
    • Papapetrou, P.1    Kollios, G.2    Sclaroff, S.3    Gunopulos, D.4
  • 33
    • 57849101125 scopus 로고    scopus 로고
    • Detecting small group activities from multimodal observations
    • 10.1007/s10489-007-0074-y (2009)
    • O Brdiczka, et al. 2009 Detecting small group activities from multimodal observations Appl Intell 30 1 47 57 10.1007/s10489-007-0074-y (2009)
    • (2009) Appl Intell , vol.30 , Issue.1 , pp. 47-57
    • Brdiczka, O.1
  • 34
    • 57849090497 scopus 로고    scopus 로고
    • Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images
    • 10.1007/s10489-007-0072-0 (2009)
    • E Kyriacou, et al. 2009 Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images Appl Intell 30 1 3 23 10.1007/s10489-007-0072-0 (2009)
    • (2009) Appl Intell , vol.30 , Issue.1 , pp. 3-23
    • Kyriacou, E.1
  • 35
    • 62949123215 scopus 로고    scopus 로고
    • DRFP-tree: Disk-resident frequent pattern tree
    • 10.1007/s10489-007-0099-2 (2009)
    • M Adnan R Alhajj 2009 DRFP-tree: disk-resident frequent pattern tree Appl Intell 30 2 84 97 10.1007/s10489-007-0099-2 (2009)
    • (2009) Appl Intell , vol.30 , Issue.2 , pp. 84-97
    • Adnan, M.1    Alhajj, R.2
  • 36
    • 68149168998 scopus 로고    scopus 로고
    • Learning teaching strategies in an adaptive and intelligent educational system through reinforcement learning
    • 10.1007/s10489-008-0115-1 (2009)
    • A Iglesias, et al. 2009 Learning teaching strategies in an adaptive and intelligent educational system through reinforcement learning Appl Intell 31 1 89 106 10.1007/s10489-008-0115-1 (2009)
    • (2009) Appl Intell , vol.31 , Issue.1 , pp. 89-106
    • Iglesias, A.1
  • 37
    • 70349463075 scopus 로고    scopus 로고
    • Robust classification for spam filtering by back-propagation neural networks using behavior-based features
    • 10.1007/s10489-008-0116-0 (2009)
    • C Wu C Tsai 2009 Robust classification for spam filtering by back-propagation neural networks using behavior-based features Appl Intell 31 2 107 121 10.1007/s10489-008-0116-0 (2009)
    • (2009) Appl Intell , vol.31 , Issue.2 , pp. 107-121
    • Wu, C.1    Tsai, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.