메뉴 건너뛰기




Volumn 58, Issue , 2012, Pages 1-9

Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

Author keywords

Energy demand; Evolutionary algorithm; Forecasting; Industrial sector

Indexed keywords

ARTIFICIAL INTELLIGENT; CONSUMPTION OF ENERGY; ECONOMIC DEVELOPMENT; ELECTRICITY TARIFF; ELECTRICITY-CONSUMPTION; ENERGY DEMAND FORECASTING; ENERGY DEMANDS; ENERGY FORECASTING; ERROR PERCENTAGE; FITNESS FUNCTIONS; FORECASTING MODELS; FUEL PRICES; INDUSTRIAL SECTOR; LONG TERM PLANNING; MEAN ABSOLUTE DEVIATIONS; METAL INDUSTRIES; NON-LINEAR MODEL; NONLINEAR FUNCTIONS; PREVIOUS YEAR; PSO ALGORITHMS; REAL NUMBER; REAL-CODED GENETIC ALGORITHM; ROOT MEAN SQUARE ERRORS; SOCIAL FUNCTION; SOCIAL WELFARE; SUSTAINABLE ENERGY SUPPLY; TURKISHS;

EID: 84856285262     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2011.12.022     Document Type: Article
Times cited : (47)

References (39)
  • 1
    • 80053171957 scopus 로고    scopus 로고
    • A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
    • M.S. Kiran, E. Ozceylan, M. Gunduz, and T. Paksoy A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey Energy Convers Manage 53 1 2012 75 83
    • (2012) Energy Convers Manage , vol.53 , Issue.1 , pp. 75-83
    • Kiran, M.S.1    Ozceylan, E.2    Gunduz, M.3    Paksoy, T.4
  • 2
    • 2442640511 scopus 로고    scopus 로고
    • Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach
    • H. Ceylan, and H.K. Ozturk Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach Energy Convers Manage 45 15-16 2004 2525 2537
    • (2004) Energy Convers Manage , vol.45 , Issue.1516 , pp. 2525-2537
    • Ceylan, H.1    Ozturk, H.K.2
  • 3
    • 34447504443 scopus 로고    scopus 로고
    • Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption
    • DOI 10.1016/j.enpol.2007.04.020, PII S0301421507001668
    • A. Azadeh, and S. Tarverdian Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption Energy Policy 35 10 2007 5229 5241 (Pubitemid 47065328)
    • (2007) Energy Policy , vol.35 , Issue.10 , pp. 5229-5241
    • Azadeh, A.1    Tarverdian, S.2
  • 4
    • 44649149565 scopus 로고    scopus 로고
    • Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey
    • O.E. Canyurt, and H.K. Ozturk Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey Energy Policy 36 7 2008 2562 2569
    • (2008) Energy Policy , vol.36 , Issue.7 , pp. 2562-2569
    • Canyurt, O.E.1    Ozturk, H.K.2
  • 5
    • 34248530761 scopus 로고    scopus 로고
    • Ant colony optimization approach to estimate energy demand of Turkey
    • D. Toksari Ant colony optimization approach to estimate energy demand of Turkey Energy Policy 35 8 2007 3984 3990
    • (2007) Energy Policy , vol.35 , Issue.8 , pp. 3984-3990
    • Toksari, D.1
  • 6
    • 8344249357 scopus 로고    scopus 로고
    • Energy demand estimation based on two-different genetic algorithm approaches
    • O.E. Canyurt, H. Ceylan, H.K. Ozturk, and A. Hepbasli Energy demand estimation based on two-different genetic algorithm approaches Energy Sour Part A 26 14 2004 1313 1320
    • (2004) Energy Sour Part A , vol.26 , Issue.14 , pp. 1313-1320
    • Canyurt, O.E.1    Ceylan, H.2    Ozturk, H.K.3    Hepbasli, A.4
  • 7
    • 34047099220 scopus 로고    scopus 로고
    • Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
    • DOI 10.1016/j.amc.2006.08.093, PII S0096300306011088
    • A. Azadeh, S.F. Ghaderi, S. Tarverdian, and M. Saberi Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption Appl Math Comput 186 2 2007 1731 1741 (Pubitemid 46509532)
    • (2007) Applied Mathematics and Computation , vol.186 , Issue.2 , pp. 1731-1741
    • Azadeh, A.1    Ghaderi, S.F.2    Tarverdian, S.3    Saberi, M.4
  • 8
    • 70349578020 scopus 로고    scopus 로고
    • Long term electric load forecasting based on particle swarm optimization
    • M.R. AlRashidi, and K.M. EL-Naggar Long term electric load forecasting based on particle swarm optimization Appl Energy 87 1 2010 320 326
    • (2010) Appl Energy , vol.87 , Issue.1 , pp. 320-326
    • Alrashidi, M.R.1    El-Naggar, K.M.2
  • 9
    • 84858285322 scopus 로고    scopus 로고
    • Energy demand function simulation in Iran, by using Particle Swarm Optimization (PSO) algorithm
    • Emami Meybodi A, Khezri Mohsen AA. Energy demand function simulation in Iran, by using Particle Swarm Optimization (PSO) algorithm. Quarterly Energy Economics, Review; 2009.
    • (2009) Quarterly Energy Economics, Review
    • Emami Meybodi, A.1    Khezri Mohsen, A.A.2
  • 10
    • 10944220809 scopus 로고    scopus 로고
    • Estimating the Turkish residential-commercial energy output based on genetic algorithm (GA) approaches
    • DOI 10.1016/j.enpol.2003.11.001, PII S030142150300332X
    • O.E. Canyurt, H.K. Ozturk, A. Hepbasli, and Z. Utlu Estimating the Turkish residential-commercial energy output based on genetic algorithm (GA) approaches Energy Policy 33 8 2005 1011 1019 (Pubitemid 40019857)
    • (2005) Energy Policy , vol.33 , Issue.8 , pp. 1011-1019
    • Canyurt, O.E.1    Ozturk, H.K.2    Hepbasli, A.3    Utlu, Z.4
  • 11
    • 80054755388 scopus 로고    scopus 로고
    • Forecasting energy consumption using a grey model improved by incorporating genetic programming
    • Y.-S. Lee, and L.-I. Tong Forecasting energy consumption using a grey model improved by incorporating genetic programming Energy Convers Manage 52 1 2011 147 152
    • (2011) Energy Convers Manage , vol.52 , Issue.1 , pp. 147-152
    • Lee, Y.-S.1    Tong, L.-I.2
  • 12
    • 21844460262 scopus 로고    scopus 로고
    • Forecasting total and industrial sector electricity demand based on genetic algorithm approach: Turkey case study
    • DOI 10.1002/er.1092
    • H.K. Ozturk, and H. Ceylan Forecasting total and industrial sector electricity demand based on genetic algorithm approach: Turkey case study Int J Energy Res 29 9 2005 829 840 (Pubitemid 40959266)
    • (2005) International Journal of Energy Research , vol.29 , Issue.9 , pp. 829-840
    • Ozturk, H.K.1    Ceylan, H.2
  • 13
    • 43149117467 scopus 로고    scopus 로고
    • Improvement of energy demand forecasts using swarm intelligence. The case of Turkey with projections to 2025
    • A. Ünler Improvement of energy demand forecasts using swarm intelligence. The case of Turkey with projections to 2025 Energy Policy 36 6 2008 1937 1944
    • (2008) Energy Policy , vol.36 , Issue.6 , pp. 1937-1944
    • Ünler, A.1
  • 14
    • 80053361577 scopus 로고    scopus 로고
    • Energy demand projection of China using a path-coefficient analysis and PSO-GA approach
    • S. Yu, K. Zhu, and X. Zhang Energy demand projection of China using a path-coefficient analysis and PSO-GA approach Energy Convers Manage 53 1 2012 142 153
    • (2012) Energy Convers Manage , vol.53 , Issue.1 , pp. 142-153
    • Yu, S.1    Zhu, K.2    Zhang, X.3
  • 15
    • 79251619057 scopus 로고    scopus 로고
    • Price forecasting of day-ahead electricity markets using a hybrid forecast method
    • M. Shafie-khah, M.P. Moghaddam, and M.K. Sheikh-El-Eslami Price forecasting of day-ahead electricity markets using a hybrid forecast method Energy Convers Manage 52 5 2011 2165 2169
    • (2011) Energy Convers Manage , vol.52 , Issue.5 , pp. 2165-2169
    • Shafie-Khah, M.1    Moghaddam, M.P.2    Sheikh-El-Eslami, M.K.3
  • 16
    • 78049524148 scopus 로고    scopus 로고
    • A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
    • H.M.I. Pousinho, V.M.F. Mendes, and J.P.S. Catalão A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal Energy Convers Manage 52 1 2011 397 402
    • (2011) Energy Convers Manage , vol.52 , Issue.1 , pp. 397-402
    • Pousinho, H.M.I.1    Mendes, V.M.F.2    Catalão, J.P.S.3
  • 17
    • 84858287333 scopus 로고    scopus 로고
    • A hybrid procedure for energy demand forecasting in China
    • Yu S-Wei, Zhu K-Jun. A hybrid procedure for energy demand forecasting in China. Energy, 2011.
    • (2011) Energy
    • S-Wei, Y.1    K-Jun, Z.2
  • 18
    • 37249009707 scopus 로고    scopus 로고
    • A hybrid genetic algorithm and particle swarm optimization for multimodal functions
    • DOI 10.1016/j.asoc.2007.07.002, PII S1568494607000683
    • Y.-T. Kao, and E. Zahara A hybrid genetic algorithm and particle swarm optimization for multimodal functions Appl Soft Comput 8 2 2008 849 857 (Pubitemid 350266482)
    • (2008) Applied Soft Computing Journal , vol.8 , Issue.2 , pp. 849-857
    • Kao, Y.-T.1    Zahara, E.2
  • 22
    • 0042525889 scopus 로고    scopus 로고
    • A novel genetic-algorithm-based neural network for short-term load forecasting
    • S.H. Ling, F.H. Leung, H.K. Lam, Y.S. Lee, and P.K. Tam A novel genetic-algorithm-based neural network for short-term load forecasting IEEE Trans Ind Electron 50 4 2003 793 799
    • (2003) IEEE Trans Ind Electron , vol.50 , Issue.4 , pp. 793-799
    • Ling, S.H.1    Leung, F.H.2    Lam, H.K.3    Lee, Y.S.4    Tam, P.K.5
  • 25
    • 1842787448 scopus 로고    scopus 로고
    • Three different genetic algorithm approaches to the estimation of residential exergy input/output values
    • DOI 10.1016/j.buildenv.2003.12.002, PII S0360132303002816
    • H.K. Ozturk, O.E. Canyurt, A. Hepbasli, and Z. Utlu Three different genetic algorithm approaches to the estimation of residential exergy input/output values Build Environ 39 7 2004 807 816 (Pubitemid 38462089)
    • (2004) Building and Environment , vol.39 , Issue.7 , pp. 807-816
    • Ozturk, H.K.1    Canyurt, O.E.2    Hepbasli, A.3    Utlu, Z.4
  • 26
    • 7544234827 scopus 로고    scopus 로고
    • Electricity estimation using genetic algorithm approach: A case study of Turkey
    • DOI 10.1016/j.energy.2004.08.008, PII S0360544204003391
    • H.K. Ozturk, H. Ceylan, O.E. Canyurt, and A. Hepbasli Electricity estimation using genetic algorithm approach: a case study of Turkey Energy 30 7 2005 1003 1012 (Pubitemid 39455068)
    • (2005) Energy , vol.30 , Issue.7 , pp. 1003-1012
    • Ozturk, H.K.1    Ceylan, H.2    Canyurt, O.E.3    Hepbasli, A.4
  • 28
    • 34247225982 scopus 로고    scopus 로고
    • Parameter identification problem: Real-coded GA approach
    • DOI 10.1016/j.amc.2006.09.102, PII S0096300306012884
    • M.A. Khalik, M. Sherif, S. Saraya, and F. Areed Parameter identification problem: real-coded GA approach Appl Math Comput 187 2 2007 1495 1501 (Pubitemid 46627932)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1495-1501
    • Khalik, M.A.1    Sherif, M.2    Saraya, S.3    Areed, F.4
  • 30
    • 67349196523 scopus 로고    scopus 로고
    • Estimating the input-output parameters of thermal power plants using PSO
    • K.M. El-Naggar, M.R. AlRashidi, and A.K. Al-Othman Estimating the input-output parameters of thermal power plants using PSO Energy Convers Manage 50 7 2009 1767 1772
    • (2009) Energy Convers Manage , vol.50 , Issue.7 , pp. 1767-1772
    • El-Naggar, K.M.1    Alrashidi, M.R.2    Al-Othman, A.K.3
  • 31
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • R. Jursa, and K. Rohrig Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models Int J Forecast 24 4 2008 694 709
    • (2008) Int J Forecast , vol.24 , Issue.4 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 32
    • 67349248284 scopus 로고    scopus 로고
    • An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering
    • T. Niknam, B. Amiri, J. Olamaei, and A. Arefi An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering J Zhejiang Univ - Sci A 10 4 2009 512 519
    • (2009) J Zhejiang Univ - Sci A , vol.10 , Issue.4 , pp. 512-519
    • Niknam, T.1    Amiri, B.2    Olamaei, J.3    Arefi, A.4
  • 33
    • 57449093992 scopus 로고    scopus 로고
    • An improved PSO for dynamic load dispatch of generators with valve-point effects
    • X. Yuan, A. Su, Y. Yuan, H. Nie, and L. Wang An improved PSO for dynamic load dispatch of generators with valve-point effects Energy 34 1 2009 67 74
    • (2009) Energy , vol.34 , Issue.1 , pp. 67-74
    • Yuan, X.1    Su, A.2    Yuan, Y.3    Nie, H.4    Wang, L.5
  • 34
    • 52949085448 scopus 로고    scopus 로고
    • Application of enhanced PSO approach to optimal scheduling of hydro system
    • X. Yuan, L. Wang, and Y. Yuan Application of enhanced PSO approach to optimal scheduling of hydro system Energy Convers Manage 49 11 2008 2966 2972
    • (2008) Energy Convers Manage , vol.49 , Issue.11 , pp. 2966-2972
    • Yuan, X.1    Wang, L.2    Yuan, Y.3
  • 35
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • A. Ratnaweera, S.K. Halgamuge, and H.C. Watson Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients IEEE Trans Evol Comput 8 3 2004 240 255
    • (2004) IEEE Trans Evol Comput , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.K.2    Watson, H.C.3
  • 37
    • 81855183358 scopus 로고    scopus 로고
    • Deputy for energy affaires, ministry of energy
    • Iranian Energy Yearbook 2008. Deputy for energy affaires, ministry of energy, 2009.
    • (2009) Iranian Energy Yearbook 2008
  • 38
    • 0003682162 scopus 로고    scopus 로고
    • Iran's statistical center, management and planning organization
    • Iranian Statistical Year-book. Iran's statistical center, management and planning organization, 2011.
    • (2011) Iranian Statistical Year-book
  • 39
    • 44449103194 scopus 로고    scopus 로고
    • Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
    • A. Azadeh, S.F. Ghaderi, and S. Sohrabkhani Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors Energy Convers Manage 49 8 2008 2272 2278
    • (2008) Energy Convers Manage , vol.49 , Issue.8 , pp. 2272-2278
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.