메뉴 건너뛰기




Volumn 46, Issue 4, 2012, Pages 1133-1144

Wastewater quality monitoring system using sensor fusion and machine learning techniques

Author keywords

Boosting IPW PLS; Online monitoring; Turbidity; UV Vis spectroscopy; Variable weighting; Wastewater treatment

Indexed keywords

CHEMICAL OXYGEN DEMAND; EFFLUENTS; ITERATIVE METHODS; LEAST SQUARES APPROXIMATIONS; MACHINE LEARNING; PARTIAL DISCHARGES; PILOT PLANTS; SPECTROMETERS; TURBIDITY; ULTRAVIOLET VISIBLE SPECTROSCOPY; WASTEWATER TREATMENT; WATER QUALITY;

EID: 84856112872     PISSN: 00431354     EISSN: 18792448     Source Type: Journal    
DOI: 10.1016/j.watres.2011.12.005     Document Type: Article
Times cited : (101)

References (42)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19:716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0003425384 scopus 로고    scopus 로고
    • American Public Health Association, New York, American Public Health Association (APHA) American Water Works Association Water Environment Federation
    • American Public Health Association (APHA), American Water Works Association, Water Environment Federation Standard Methods for the Examination of Water and Wastewater 2005, American Public Health Association, New York. 21st ed.
    • (2005) Standard Methods for the Examination of Water and Wastewater
  • 3
    • 0030617326 scopus 로고    scopus 로고
    • Estimation of biochemical oxygen demand in slurry and effluent using ultraviolet spectrophotometry
    • Bookman S.K.E. Estimation of biochemical oxygen demand in slurry and effluent using ultraviolet spectrophotometry. Water Research 1997, 31:372-374.
    • (1997) Water Research , vol.31 , pp. 372-374
    • Bookman, S.K.E.1
  • 5
    • 0023701056 scopus 로고
    • Optimization and uprating of activated sludge plants by efficient process design
    • Chambers B., Jones G. Optimization and uprating of activated sludge plants by efficient process design. Water Science and Technology 1988, 20:121-132.
    • (1988) Water Science and Technology , vol.20 , pp. 121-132
    • Chambers, B.1    Jones, G.2
  • 6
    • 3242668710 scopus 로고    scopus 로고
    • Variable selection by modified IPW (iterative predictor weighting)-PLS (partial least squares) in continuous wavelet regression models
    • Chen D., Hu B., Shao X.G., Su Q.D. Variable selection by modified IPW (iterative predictor weighting)-PLS (partial least squares) in continuous wavelet regression models. Analyst 2004, 129:664-669.
    • (2004) Analyst , vol.129 , pp. 664-669
    • Chen, D.1    Hu, B.2    Shao, X.G.3    Su, Q.D.4
  • 7
    • 0034282461 scopus 로고    scopus 로고
    • Electrocoagulation and electroflotation of restaurant wastewater
    • Chen G., Chen X., Yue P.L. Electrocoagulation and electroflotation of restaurant wastewater. Journal of Environmental Engineering 2000, 126:858-863.
    • (2000) Journal of Environmental Engineering , vol.126 , pp. 858-863
    • Chen, G.1    Chen, X.2    Yue, P.L.3
  • 8
    • 84856120194 scopus 로고    scopus 로고
    • [Online]. Available at:, (accessed 10.09.11), Drainage Services Department of the Government of the Hong Kong Special Administrative Region (DSD-HKSAR)
    • Drainage Services Department of the Government of the Hong Kong Special Administrative Region (DSD-HKSAR) Sewage Service Charging Scheme 2011, [Online]. Available at:, (accessed 10.09.11). http://www.dsd.gov.hk/EN/Sewage_Services_Charging_Scheme/index.html.
    • (2011) Sewage Service Charging Scheme
  • 9
  • 10
    • 0036568038 scopus 로고    scopus 로고
    • Boosting methods for regression
    • Duffy N., Helmbold D. Boosting methods for regression. Machine Learning 2002, 47:153-200.
    • (2002) Machine Learning , vol.47 , pp. 153-200
    • Duffy, N.1    Helmbold, D.2
  • 12
    • 33745195283 scopus 로고    scopus 로고
    • Estimation of chemical oxygen demand by ultraviolet spectroscopic profiling and artificial neural networks
    • Fogelman S., Blumenstein M., Zhao H. Estimation of chemical oxygen demand by ultraviolet spectroscopic profiling and artificial neural networks. Neural Computing & Applications 2006, 15:197-203.
    • (2006) Neural Computing & Applications , vol.15 , pp. 197-203
    • Fogelman, S.1    Blumenstein, M.2    Zhao, H.3
  • 13
    • 0001286453 scopus 로고    scopus 로고
    • Iterative predictor weighting (IPW) PLS: a technique for the elimination of useless predictors in regression problems
    • Forina M., Casolino C., Millan C.P. Iterative predictor weighting (IPW) PLS: a technique for the elimination of useless predictors in regression problems. Journal of Chemometrics 1999, 13:165-184.
    • (1999) Journal of Chemometrics , vol.13 , pp. 165-184
    • Forina, M.1    Casolino, C.2    Millan, C.P.3
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 1997, 55:119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001, 29:1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., Tibshirani R. Additive logistic regression: a statistical view of boosting. Annals of Statistics 2000, 28:337-374.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi P., Kowalski B. Partial least-squares regression: a tutorial. Analytica Chimica Acta 1986, 185:1-17.
    • (1986) Analytica Chimica Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.2
  • 18
    • 0036757852 scopus 로고    scopus 로고
    • Wavelength selection for multivariate calibration using a genetic algorithm: a novel initialization strategy
    • Goicoechea H.C., Olivieri A.C. Wavelength selection for multivariate calibration using a genetic algorithm: a novel initialization strategy. Journal of Chemical Information and Modeling 2002, 42:1146-1153.
    • (2002) Journal of Chemical Information and Modeling , vol.42 , pp. 1146-1153
    • Goicoechea, H.C.1    Olivieri, A.C.2
  • 21
  • 27
    • 0037017789 scopus 로고    scopus 로고
    • Spectroscopic study of dissolved organic sulfur (DOS): a case study of mercaptans
    • Roig B., Chalmin E., Touraud E., Thomas O. Spectroscopic study of dissolved organic sulfur (DOS): a case study of mercaptans. Talanta 2002, 56:585-590.
    • (2002) Talanta , vol.56 , pp. 585-590
    • Roig, B.1    Chalmin, E.2    Touraud, E.3    Thomas, O.4
  • 29
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • Shao X., Bian X., Cai W. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Analytica Chimica Acta 2010, 666:32-37.
    • (2010) Analytica Chimica Acta , vol.666 , pp. 32-37
    • Shao, X.1    Bian, X.2    Cai, W.3
  • 31
    • 77955714047 scopus 로고    scopus 로고
    • Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares
    • Tan C., Wang J., Wu T., Qin X., Li M. Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares. Vibrational Spectroscopy 2010, 54:35-41.
    • (2010) Vibrational Spectroscopy , vol.54 , pp. 35-41
    • Tan, C.1    Wang, J.2    Wu, T.3    Qin, X.4    Li, M.5
  • 36
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
    • Wold S., Ruhe A., Wold H., Dunn W. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing 1984, 5:735-743.
    • (1984) SIAM Journal on Scientific and Statistical Computing , vol.5 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn, W.4
  • 37
    • 84856109187 scopus 로고    scopus 로고
    • An applied research on information fusion and ensemble learning for spectral analysis of water quality. Ph.D. thesis, Zhejiang University, Hangzhou, China.
    • Wu, X.L., 2007. An applied research on information fusion and ensemble learning for spectral analysis of water quality. Ph.D. thesis, Zhejiang University, Hangzhou, China.
    • (2007)
    • Wu, X.L.1
  • 38
    • 67650553109 scopus 로고    scopus 로고
    • A boosting-partial least squared method for ultraviolet spectroscopic analysis of water quality
    • Wu X.L., Li Y.J., Wu T.J. A boosting-partial least squared method for ultraviolet spectroscopic analysis of water quality. Chinese Journal of Analytical Chemistry 2006, 8:1091-1095.
    • (2006) Chinese Journal of Analytical Chemistry , vol.8 , pp. 1091-1095
    • Wu, X.L.1    Li, Y.J.2    Wu, T.J.3
  • 39
    • 66349099851 scopus 로고    scopus 로고
    • Application of multi-spectral information fusion for water quality analysis
    • Wu X.L., Li Y.J., Wu T.J. Application of multi-spectral information fusion for water quality analysis. Chinese Journal of Analytical Chemistry 2007, 12:1716-1720.
    • (2007) Chinese Journal of Analytical Chemistry , vol.12 , pp. 1716-1720
    • Wu, X.L.1    Li, Y.J.2    Wu, T.J.3
  • 40
    • 84898985725 scopus 로고    scopus 로고
    • A gradient-based boosting algorithm for regression problems
    • MIT Press, Cambridge, MA
    • Zemel R., Pitassi T. A gradient-based boosting algorithm for regression problems. Advances in Neural Information Processing Systems 2001, vol. 13. MIT Press, Cambridge, MA.
    • (2001) Advances in Neural Information Processing Systems , vol.13
    • Zemel, R.1    Pitassi, T.2
  • 42
    • 34248670398 scopus 로고    scopus 로고
    • QSAR study of angiotensin II antagonists using robust boosting partial least squares regression
    • Zhou Y.P., Cai C.B., Huan S., Jiang J.H., Wu H.L., Shen G.L., Yu R.Q. QSAR study of angiotensin II antagonists using robust boosting partial least squares regression. Analytica Chimica Acta 2007, 593:68-74.
    • (2007) Analytica Chimica Acta , vol.593 , pp. 68-74
    • Zhou, Y.P.1    Cai, C.B.2    Huan, S.3    Jiang, J.H.4    Wu, H.L.5    Shen, G.L.6    Yu, R.Q.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.