-
2
-
-
48049120920
-
On the modelling crowd dynamics from scaling to hyperbolic macroscopic models
-
Bellomo N, Dogbé C On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math Models Methods Appl Sci 2008, 18(suppl):1317-1345.
-
(2008)
Math Models Methods Appl Sci
, vol.18
, Issue.SUPPL.
, pp. 1317-1345
-
-
Bellomo, N.1
Dogbé, C.2
-
3
-
-
79951887438
-
On nonlocal conservation laws modelling sedimentation
-
Betancourt F, Bürger R, Karlsen KH, Tory EM On nonlocal conservation laws modelling sedimentation. Nonlinearity 2011, 24:855-885.
-
(2011)
Nonlinearity
, vol.24
, pp. 855-885
-
-
Betancourt, F.1
Bürger, R.2
Karlsen, K.H.3
Tory, E.M.4
-
4
-
-
0008941688
-
A proposed mathematical model for computer prediction of crowd movements and their associated risks
-
Elsevier, Amsterdam, R.A. Smith, J.F. Dickie (Eds.)
-
Bradley G A proposed mathematical model for computer prediction of crowd movements and their associated risks. Engineering for Crowd Safety 1993, 303-311. Elsevier, Amsterdam. R.A. Smith, J.F. Dickie (Eds.).
-
(1993)
Engineering for Crowd Safety
, pp. 303-311
-
-
Bradley, G.1
-
6
-
-
84856102759
-
-
P.D.E. models of pedestrian flow. Unpublished,
-
Bressan A, Colombo R M. P.D.E. models of pedestrian flow. Unpublished, 2007.
-
(2007)
-
-
Bressan, A.1
Colombo, R.M.2
-
7
-
-
79952954451
-
Continuous limit of a crowd motion and herding model
-
analysis and numerical simulations. Preprint,
-
Burger M, Markowich P A, Pietschmann J -F. Continuous limit of a crowd motion and herding model: analysis and numerical simulations. Preprint, 2011.
-
(2011)
-
-
Burger, M.1
Markowich, P.A.2
Pietschmann, J.-F.3
-
8
-
-
78149285853
-
An optimization problem for mass transportation with congested dynamics
-
Buttazzo G, Jimenez C, Oudet E An optimization problem for mass transportation with congested dynamics. SIAM J Control Optim 2009, 48:1961-1976.
-
(2009)
SIAM J Control Optim
, vol.48
, pp. 1961-1976
-
-
Buttazzo, G.1
Jimenez, C.2
Oudet, E.3
-
10
-
-
84856094029
-
-
A class of non local models for pedestrian traffic. Preprint,
-
Colombo R M, Garavello M, Mercier M. A class of non local models for pedestrian traffic. Preprint, 2011.
-
(2011)
-
-
Colombo, R.M.1
Garavello, M.2
Mercier, M.3
-
11
-
-
23944512223
-
Pedestrian flows and non-classical shocks
-
Colombo RM, Rosini MD Pedestrian flows and non-classical shocks. Math Methods Appl Sci 2005, 28(13):1553-1567.
-
(2005)
Math Methods Appl Sci
, vol.28
, Issue.13
, pp. 1553-1567
-
-
Colombo, R.M.1
Rosini, M.D.2
-
12
-
-
64049114328
-
Existence of nonclassical solutions in a pedestrian flow model
-
Colombo RM, Rosini MD Existence of nonclassical solutions in a pedestrian flow model. Nonlinear Anal Real World Appl 2009, 10(5):2716-2728.
-
(2009)
Nonlinear Anal Real World Appl
, vol.10
, Issue.5
, pp. 2716-2728
-
-
Colombo, R.M.1
Rosini, M.D.2
-
14
-
-
0001690234
-
Polygonal approximations of solutions of the initial value problem for a conservation law
-
Dafermos CM Polygonal approximations of solutions of the initial value problem for a conservation law. J Math Anal Appl 1972, 38:33-41.
-
(1972)
J Math Anal Appl
, vol.38
, pp. 33-41
-
-
Dafermos, C.M.1
-
16
-
-
78349307232
-
On the Hughes' model for pedestrian flow: The one-dimensional case
-
Di Francesco M, Markowich PA, Pietschmann J-F, Wolfram MT On the Hughes' model for pedestrian flow: The one-dimensional case. J Differ Equ 2011, 250:1334-1362.
-
(2011)
J Differ Equ
, vol.250
, pp. 1334-1362
-
-
Di Francesco, M.1
Markowich, P.A.2
Pietschmann, J.-F.3
Wolfram, M.T.4
-
17
-
-
77956010519
-
Modeling crowd dynamics by the mean-field limit approach
-
Dogbé C Modeling crowd dynamics by the mean-field limit approach. Math Comp Model 2010, 52:1506-1520.
-
(2010)
Math Comp Model
, vol.52
, pp. 1506-1520
-
-
Dogbé, C.1
-
18
-
-
0002447593
-
Boundary conditions for nonlinear hyperbolic systems of conservation laws
-
Dubois F, LeFloch P Boundary conditions for nonlinear hyperbolic systems of conservation laws. J Differ Equ 1988, 71(1):93-122.
-
(1988)
J Differ Equ
, vol.71
, Issue.1
, pp. 93-122
-
-
Dubois, F.1
LeFloch, P.2
-
19
-
-
0033410428
-
Self-organized phase transitions in CA-models for pedestrians
-
Fukui M, Ishibashi Y Self-organized phase transitions in CA-models for pedestrians. J Phys Soc Japan 1999, 8:2861-2863.
-
(1999)
J Phys Soc Japan
, vol.8
, pp. 2861-2863
-
-
Fukui, M.1
Ishibashi, Y.2
-
20
-
-
0035470907
-
Traffic and related self-driven many-particle systems
-
Helbing D Traffic and related self-driven many-particle systems. Rev Mod Phys 2001, 73(4):1067-1141.
-
(2001)
Rev Mod Phys
, vol.73
, Issue.4
, pp. 1067-1141
-
-
Helbing, D.1
-
21
-
-
0142016001
-
Simulation of pedestrian crowds in normal and evacuation situations
-
Springer, Berlin, M. Schreckenberg, S.D. Sharma (Eds.)
-
Helbing D, Farkas IJ, Molnar P, Vicsek T Simulation of pedestrian crowds in normal and evacuation situations. Pedestrian and Evacuation Dynamics 2002, 21-58. Springer, Berlin. M. Schreckenberg, S.D. Sharma (Eds.).
-
(2002)
Pedestrian and Evacuation Dynamics
, pp. 21-58
-
-
Helbing, D.1
Farkas, I.J.2
Molnar, P.3
Vicsek, T.4
-
22
-
-
35248856713
-
The statistics of crowd fluids
-
Henderson LF The statistics of crowd fluids. Nature 1971, 229:381-383.
-
(1971)
Nature
, vol.229
, pp. 381-383
-
-
Henderson, L.F.1
-
23
-
-
0016336636
-
On the fluids mechanics of human crowd motion
-
Henderson LF On the fluids mechanics of human crowd motion. Transp Res 1974, 8:509-515.
-
(1974)
Transp Res
, vol.8
, pp. 509-515
-
-
Henderson, L.F.1
-
25
-
-
0346245136
-
The flow of human crowds
-
Hughes RL The flow of human crowds. Annu Rev Fluid Mech 2003, 35:169-182.
-
(2003)
Annu Rev Fluid Mech
, vol.35
, pp. 169-182
-
-
Hughes, R.L.1
-
26
-
-
0033196472
-
Stability of conservation laws with discontinuous coefficients
-
Klausen RA, Risebro NH Stability of conservation laws with discontinuous coefficients. J Differ Equ 1999, 157:41-60.
-
(1999)
J Differ Equ
, vol.157
, pp. 41-60
-
-
Klausen, R.A.1
Risebro, N.H.2
-
27
-
-
84956238079
-
First order quasilinear equations in several independent variables
-
KruŽkov SN First order quasilinear equations in several independent variables. Math USSR Sb 1970, 10:217-243.
-
(1970)
Math USSR Sb
, vol.10
, pp. 217-243
-
-
Kružkov, S.N.1
-
28
-
-
84956105326
-
Generalized solutions of the Hamilton-Jacobi equations of eikonal type. i. formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions
-
KruŽkov SN Generalized solutions of the Hamilton-Jacobi equations of eikonal type. i. formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions. Math USSR Sb 1975, 27(3):406-446.
-
(1975)
Math USSR Sb
, vol.27
, Issue.3
, pp. 406-446
-
-
Kružkov, S.N.1
-
32
-
-
0033883920
-
Jamming transition in two-dimensional pedestrian traffic
-
Muramatsu M, Nagatani T Jamming transition in two-dimensional pedestrian traffic. Physica A 2000, 275:281-291.
-
(2000)
Physica A
, vol.275
, pp. 281-291
-
-
Muramatsu, M.1
Nagatani, T.2
-
33
-
-
0000088105
-
Uniqueness and stability of the generalized solution of the {C}auchy problem for a quasi-linear equation
-
Oleinik OA Uniqueness and stability of the generalized solution of the {C}auchy problem for a quasi-linear equation. Uspehi Mat Nauk 1959, 14(2(86)):165-170.
-
(1959)
Uspehi Mat Nauk
, vol.14
, Issue.2-86
, pp. 165-170
-
-
Oleinik, O.A.1
-
34
-
-
68149136534
-
Pedestrian flows in bounded domains with obstacles
-
Piccoli B, Tosin A Pedestrian flows in bounded domains with obstacles. Contin Mech Thermodyn 2009, 21(2):85-107.
-
(2009)
Contin Mech Thermodyn
, vol.21
, Issue.2
, pp. 85-107
-
-
Piccoli, B.1
Tosin, A.2
-
35
-
-
41549125404
-
Encyclopedia of Complexity and System Science
-
Springer, R.A. Meyers (Ed.)
-
Schadschneider A, Klingsch W, Kluepfel H, Kretz T, Rogsch C, Seyfried A Encyclopedia of Complexity and System Science. Chapter Evacuation Dynamics: Empirical Results, Modeling and Applications 2009, Vol 3. Springer. R.A. Meyers (Ed.).
-
(2009)
Chapter Evacuation Dynamics: Empirical Results, Modeling and Applications
, vol.3
-
-
Schadschneider, A.1
Klingsch, W.2
Kluepfel, H.3
Kretz, T.4
Rogsch, C.5
Seyfried, A.6
|