메뉴 건너뛰기




Volumn 21, Issue 4, 2011, Pages 1721-1739

On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming

Author keywords

Exact penalty methods; Global complexity bounds; Global rate of convergence; Nonlinear programming; Nonsmooth optimization; Quadratic regularization methods; Steepest descent methods; Trust region methods

Indexed keywords

COMPLEXITY BOUNDS; EXACT PENALTIES; GLOBAL RATE OF CONVERGENCE; NONSMOOTH OPTIMIZATION; QUADRATIC REGULARIZATION METHODS; STEEPEST DESCENT; TRUST-REGION METHODS;

EID: 84856057771     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/11082381X     Document Type: Article
Times cited : (110)

References (15)
  • 1
    • 33646718636 scopus 로고    scopus 로고
    • On the convergence of successive linear-quadratic programming algorithms
    • R. H. Byrd, N. I.M. Gould, J. Nocedal, and R. A.Waltz, On the convergence of successive linear-quadratic programming algorithms, SIAM J. Optim., 16 (2005), pp. 471-489.
    • (2005) SIAM J. Optim. , vol.16 , pp. 471-489
    • Byrd, R.H.1    Gould, N.I.M.2    Nocedal, J.3    Waltz, R.A.4
  • 2
    • 81255179401 scopus 로고    scopus 로고
    • Adaptive cubic regularisation methods for unconstrained optimization. Part II: Worst-case function-and derivative-evaluation complexity
    • C. Cartis, N. I. M. Gould, and Ph. L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. Part II: Worst-case function-and derivative-evaluation complexity, Math. Program., 130 (2011), pp. 295-319.
    • (2011) Math. Program. , vol.130 , pp. 295-319
    • Cartis, C.1    Gould, N.I.M.2    Toint, Ph.L.3
  • 3
    • 85120507440 scopus 로고    scopus 로고
    • An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity
    • to appear
    • C. Cartis, N. I. M. Gould, and Ph. L. Toint, An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity, IMA J. Numer. Anal., to appear.
    • IMA J. Numer. Anal.
    • Cartis, C.1    Gould, N.I.M.2    Toint, Ph.L.3
  • 4
    • 79251493375 scopus 로고    scopus 로고
    • On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization
    • C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization, SIAMJ. Optim., 20 (2010), pp. 2833-2852.
    • (2010) SIAMJ. Optim. , vol.20 , pp. 2833-2852
    • Cartis, C.1    Gould, N.I.M.2    Toint, Ph.L.3
  • 7
    • 68449102019 scopus 로고    scopus 로고
    • Nonlinear programming without a penalty function or a filter
    • N. I. M. Gould and Ph. L. Toint, Nonlinear programming without a penalty function or a filter, Math. Program., 122 (2010), pp. 155-196.
    • (2010) Math. Program. , vol.122 , pp. 155-196
    • Gould, N.I.M.1    Toint, Ph.L.2
  • 8
    • 55849087653 scopus 로고    scopus 로고
    • A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization
    • S. Gratton, M. Mouffe, Ph. L. Toint, and M. Weber-Mendonça, A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization, IMA J. Numer. Anal., 28 (2008), pp. 827-861.
    • (2008) IMA J. Numer. Anal. , vol.28 , pp. 827-861
    • Gratton, S.1    Mouffe, M.2    Toint, Ph.L.3    Weber-Mendonça, M.4
  • 9
    • 61349175317 scopus 로고    scopus 로고
    • Recursive trust-region methods for multiscale nonlinear optimization
    • S. Gratton, A. Sartenaer, and Ph. L. Toint, Recursive trust-region methods for multiscale nonlinear optimization, SIAM J. Optim., 19 (2008), pp. 414-444.
    • (2008) SIAM J. Optim. , vol.19 , pp. 414-444
    • Gratton, S.1    Sartenaer, A.2    Toint, Ph.L.3
  • 13
    • 33947611624 scopus 로고    scopus 로고
    • Modified Gauss-Newton scheme with worst case guarantees for global performance
    • DOI 10.1080/08927020600643812, PII 773535741
    • Y. Nesterov, Modified Gauss-Newton scheme with worst case guarantees for global performance, Optim. Methods Software, 22 (2007), pp. 469-483. (Pubitemid 46479853)
    • (2007) Optimization Methods and Software , vol.22 , Issue.3 , pp. 469-483
    • Nesterov, Yu.1
  • 15
    • 0022010767 scopus 로고
    • Conditions for convergence of trust region algorithms for nonsmooth optimization
    • Y. Yuan, Conditions for convergence of trust region algorithms for non-smooth optimization, Math. Program., 31 (1985), pp. 220-228. (Pubitemid 15478434)
    • (1985) Mathematical Programming , vol.31 , Issue.2 , pp. 220-228
    • Yuan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.